首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the machinability data on grade 3 austempered ductile iron is scarce, this experimental work mainly focuses on the impact of machining parameters on cutting force and surface roughness while turning the above work material with cubic boron nitride and tungsten carbide inserts. Parameters like depth of cut, cutting speed and feed were considered in this study when analyzing the machinability of austempered ductile iron. Austempered ductile iron was turned with CBN and coated WC inserts. The response surface methodology was utilized to design the experiments and optimize the cutting parameters for the work material by each of the above inserts. The cubic boron nitride insert performs well as compared to the coated tungsten carbide for turning the austempered ductile iron and it has been concluded by taking lower force and higher surface finish in to consideration. The optimum parameters for turning austempered ductile iron with the cubic boron nitride insert is as follows: 174 meter/minute cutting speed, 0.102 millimeter/revolution feed and depth of cut of 0.5 millimeter.  相似文献   

2.
This work concerns mechanical properties of an austempered ductile cast iron (ADI). Samples alloyed with copper and molybdenum were austenitized at 910 °C for 90 min and subsequently austempered in a salt bath over a range of temperatures from 350 °C to 410 °C to obtain favorable mechanical properties such as tensile strength, elongation, and fracture toughness. Those properties were compared from various austempering heat treatments.  相似文献   

3.
In this study, ductile irons with and without 1 wt% copper alloy were austempered to become austempered ductile irons (ADIs). Microstructure, impact toughness, and fracture toughness were evaluated to determine how both the copper alloying and austempering treatments influenced the toughness properties of ductile irons. The results show that, because copper increases the retained austenite content in ADI, the Cu-alloyed ADI has better impact toughness and fracture toughness (KIC value) than does the unalloyed one. In particular, the impact toughness and the fracture toughness of ADI could be efficiently improved by treating the Cu-alloyed ductile iron at a higher austempering temperature (360 °C) to obtain more retained austenite in its microstructure.  相似文献   

4.
Traditionally steels have enjoyed some kind of monopoly in earth movement applications like ripper tips and grader blades. Earth movement demands that the material possesses both wear resistance and toughness. Ironically, the limitation of steels is that it is difficult to get a good combination of these properties. Recent research efforts in earth movement have focused on austempered ductile iron (ADI) as an alternative material, which exhibits both these properties. ADI is obtained when ductile cast iron is accorded a special heat treatment known as austempering. Before the usage of ADI can flourish, there is a need to thoroughly understand its mechanical and tribological behaviour. This paper details the heat treatment of ductile iron to yield ADI and also examines its mechanical and abrasive wear properties. These properties are compared with those of a proprietary quenched and tempered (Q&T) steel used in applications requiring wear resistance. Typically, when a load of 0.25 N mm−2 is used, the relative abrasion resistance (RAR) of ADI austempered at 375 °C with an initial hardness of 315 Hv is 2.01, while that of a Q&T steel, of hardness 635 Hv is 2.02. The good wear resistance exhibited by ADI despite the low initial hardness can be attributed to the surface transformation of retained austenite to martensite during abrasion. This phenomenon has been positively confirmed by XRD.  相似文献   

5.
Abstract

A model is developed for simultaneous prediction of the processing window and austemperability of austempered ductile iron (ADI). The processing window represents a frame of time and temperature in which ADI satisfies optimum mechanical properties defined by ASTM A897M:1990. Austemperability is the maximum section size of ductile iron that can be austempered without formation of pearlite during the austempering process. The outcome of the model presents the processing window and austemperability as a three dimensional diagram (processing - austemperability window). The processing window boundaries are estimated according to a model for prediction of the time for ausferritic reaction in ADI. The austemperability of ductile iron is predicted according to the estimated pearlite curve of the TTT diagram and a mathematical model that simulates conduction of heat in a solid cylinder. The heat transfer model is calibrated for a ductile iron of composition (wt-%) 3.63C, 2.4Si, 0.39Mn, 0.4Mo, 0.25Cu, 0.04Ni, 0.04Mg. The model for the processing - austemperability window is validated for a ductile iron of composition (wt-%) 3.41C, 2.46Si, 0.36Mn, 0.18Mo, 0.25Cu, 0.036Mg at 285, 380, and 400 ° C austempering temperatures. Results show that the material satisfies ASTM A897M:1990 standard for the chosen experimental points within the processing - austemperability window without formation of pearlite in the microstructure.  相似文献   

6.
This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies, which have the well-known advantage of low processing temperature (EN = 90 °C and CAE = 230 °C), to treat the austempered ductile iron (ADI) substrate. The eligibility of applying the EN and CAE-CrTiAlN duplex coatings on ADI, along with the coating properties, such as structure, roughness, and adhesion, was evaluated and analyzed. Wear and erosive tests were also performed to further understand the effects of the coatings on the abrasive and erosive behaviors of ADI. The results show that the unique microstructure of ADI does not deteriorate after EN and CAE treatments. With regard to erosion resistance, the duplex coated specimens perform better than do the uncoated and monolithic EN or CrTiAlN coated ones. Moreover, the duplex coatings achieve a remarkable reduction in ADI's friction coefficient from 0.85 to 0.6.  相似文献   

7.
Abstract

Austempered ductile iron is known for its excellent mechanical properties resulting from special phase composition and austempering heat treatment. Typical microstructure consists of ferrite plates of micrometre size submerged in untransformed austenite matrix. It has been recently shown that by use of appropriate chemical composition of cast iron and well targeted heat treatment parameters, it is possible to reduce ferrite plates width to submicron or even nanometric size. This creates the potential to achieve even higher mechanical properties of austempered ductile iron. The paper describes the influence of applied heat treatment parameters on microstructure of selected austempered ductile iron grades. Conditions necessary to reduce size of phases to a nanometric scale by heat treatment in austempered ductile iron are discussed.  相似文献   

8.
Effect of Si, Al and Bi on the microstructure and mechanical properties of as-welded and austempered ductile iron weld metals has been studied with SEM, TEM, X-ray diffraction, image analysing system, tension and other test methods. Results show that increasing weld Si, Al and Bi content favours improving the chilling tendency of as-welded ductile iron weld and mechanical properties of austempered ductile iron weld and the mechanism is also discussed. On this basis the optimum chemical composition of weld is determined. The mechanical properties of weld and welded joint after austempering can match those of austempered ductile iron  相似文献   

9.
The outstanding mechanical properties of austempered ductile irons (ADI) are linked to the microstructure of the matrix obtained by subjecting a ductile iron with an appropriate composition to a heat treatment called austempering. Then the microstructure of the matrix consists of bainitic ferrite with different volume fractions of retained austenite. The aim of this work is to use the magnetic Barkhausen noise (MBN) as a nondestructive method for characterizing the microstructure of ADI. First, it is shown that the amplitude and position of the peak-shaped MBN response is quite sensitive to the microstructure of the matrix of ductile irons. Thus each type of constituent (equiaxial ferrite, pearlite, martensite or bainite) exhibits a typical response and, in turn, it can be identified from the MBN response. Furthermore, a good correlation is found between MBN signal parameters and ADI heat treatment parameters, indicating that MBN is also quite sensitive to fine evolutions of the microstructure of ADI. MBN peak position is especially sensitive to the type of bainite, whereas peak amplitude is linked to the progress of the bainite reaction. Hence MBN measurements appear to be a powerful tool to assess some important microstructural features of ADI castings.  相似文献   

10.
To further improve the mechanical performance of a new alloyed austempered ductile iron(ADI), deep cryogenic treatment(DCT) has been adopted to investigate the effect of DCT time on the microstructure and mechanical behaviors of the alloyed ADI Fe-3.55 C-1.97 Si-3.79 Ni-0.71 Cu-0.92 Mo-0.64 Cr-0.36 Mn-0.30 V(in wt.%). With increasing the DCT time, more austenite transformed to martensite and very fine carbides precipitated in martensite in the extended period of DCT. The amount of austenite decreased in alloyed ductile irons, while that of martensite and carbide precipitation increased. The alloyed ADI after DCT for 6 h had the highest hardness and compressive strength, which can be attributed to the formation of more plate-like martensite and the finely precipitated carbides. There was a gradual decrease in hardness and compressive strength with increasing the DCT time to 12 h because of the dissolution of M3 C carbide. After tempering, there was a decrease in mechanical properties compared to the direct DCT sample, which was caused by the occurrence of Ostwald ripening of precipitated carbides. The optimum wear resistance was achieved for the alloyed ADI after DCT for 6 h. The wear mechanism of the alloyed ADI in associating with DCT is mainly consisted of micro-cutting wear and some plastic deformation wear.  相似文献   

11.
An understanding of the kinetics of transformation during austenitization, cooling, and austempering of ductile iron is critical to achieving the desired microstructures and ultimately mechanical properties in austempered ductile iron (ADI). To this end, dilatometry experiments have been carried out to study the austenitization and cooling behavior of an unalloyed ductile iron. When a typical austenitization temperature of 900°C is used, unlike in steels, there is an initial expansion of the specimen, which levels off as the soaking time is increased. This occurs despite the fact that the temperature remains constant. This phenomenon, hitherto unreported, highlights the subtle differences between the austenitization of ductile irons and steels. The initial expansion is attributed to the increase in austenite lattice parameter, arising from the diffusion of carbon from the graphite nodules. The levelling off signals the saturation of austenite with carbon and can therefore be used as an indicator of the appropriate austenitization time. Studies of the cooling behavior of unalloyed ductile iron have also shown that the dilatometer can be used as a tool for determining the minimum cooling rates, which guarantee the formation of ausferrite during austempering. When ductile iron is appropriately heat-treated based on results from dilatometry studies, the mechanical properties obtained are typically superior and consistent.  相似文献   

12.
The fracture behavior of copper-alloyed austempered ductile iron (ADI) was studied using metallography and fractography of selected samples. Three different grades of ADI were developed by austenitization at 900 °C for 60 min, followed by austempering for 60 min at either 270, 330, or 380 °C. The variation in austempered microstructure was determined by scanning electron microscopy of metallographically prepared samples, and structural parameters such as volume fraction of austenite, carbon content, and bainitic needle width were determined from the X-ray diffraction of powdered samples. The effect of austempering temperature on these structural parameters and on hardness, 0.2% proof stress, ultimate tensile strength (UTS), percent elongation, and impact strength was also studied. The fracture behavior under tensile and impact loading was determined by examination of the fractured surfaces and transverse cross sections near the fracture surface. The hardness, 0.2% proof stress, and UTS decrease and the impact energy increases as the austempering temperature is increased, and the morphology of the bainitic structure changes from lower to upper.  相似文献   

13.
The hardness of austempered ductile irons is relative to its microstructure, strength, ductility, machinability and wear resistance properties. Therefore, hardness measurement can be used as a simple tool to control the heat treatment, chemical composition and mechanical properties of ADI parts during the production process. The aim of this study is to develop an Artificial Neural Network (ANN) model for estimating the Vickers hardness of ADIs after austempering treatment. A Multi-Layer Perceptron model (MLP–ANN) was used with Mo%, Cu%, austempering time and temperature as inputs and the Vickers hardness of samples after austempering as the output of the model. A variety of samples were prepared in different conditions of chemical composition and heat treatment cycle. The obtained experimental results were used for training the neural network. Efficiency test of the model showed reasonably good agreement between experimental and numerical results, so the synthesized ANN model can estimate the hardness of the castings with a small error in the range of the experimental results standard deviation.  相似文献   

14.
Austempered ductile iron (ADI) has become a competitive material to conventional steels. In addition to its favorable price the main reasons are its mechanical properties can be adjusted over a wide range via heat treatment. Austempered ductile iron consists of ferrite, graphite and metastable austenite. Tailoring its microstructure (phase fractions, stability) with regard to the application is an important challenge. A cast iron used for forming dies is EN‐JS2070. In earlier studies it could be shown that EN‐JS2070 can be transformed into austempered ductile iron [1]. Machine hammer peening, causes martensitic transformation of the metastable austenite and leads to hard and smooth surfaces. Focus of this study is to optimize the microstructure with regard to machine hammer peening process. Before and after machine hammer peening the sample surfaces were characterized using optical and laser microscopy, X‐ray diffraction and hardness measurement. It could be shown that a combination of high amount of metastable austenite with a high carbon content leads to the best results in surface roughness and hardness.  相似文献   

15.
Abstract

Austempered ductile iron (ADI) is gradually replacing many fabricated and forged steel components in engineering applications. One of its advantages is the combination of good castability, machinability, and mechanical properties with significant savings in cost and weight compared with equivalent steel components. A problem in the production of ADI is the use of expensive and dangerously reactive magnesium as a graphite nodulariser. There is a need to find cheaper, safer, and equally effective substitutes. Results of an investigation of the effectiveness of a multiple calcium–magnesium based master alloy nodulariser and the properties of the ductile iron and ADI produced are reported. Up to 96% nodularity could be obtained using a special Ca–CaC2–Mg master alloy, compared with 98% using magnesium alone. The mechanical properties were also comparable.  相似文献   

16.
Al2O3/h-BN machinable composites were fabricated by pressureless sintering at 1750 °C for 2 h in nitrogen atmosphere. The relative density of the sintered composites decreased, while the porosity increased with increasing h-BN content. By adding 20 vol.% h-BN to the composites, the porosity increased up to 16.7%. The effects of weak boundary phases (WBP), including h-BN and pores, on the microstructure, mechanical properties and machinability of the composites were investigated. The flexural strength, fracture toughness, Young's modulus and hardness of the composites decreased with increasing WBP content. When WBP content increased up to 18.8 vol.%, the composites can be machined easily by cemented carbide drills. Furthermore, the machining mechanisms of the composites were investigated using Hertzian contact tests.  相似文献   

17.
The effect of Ca,Ba,Bi and Al on the amountof carbide in ductile iron weld metal,themicrostructural characteristics of ADI weld metaland the effect of heat treatment process on themicrostructure and mechanical properties of ADIweld metal have been studied.On this basis theoptimum composition of weld and the optimumheat treatment process of ADI weld metal were de-termined and a new electrode for arc cold-welding(i.e.,without preheat) of ADI was developed.Theductile iron welded joint free from eutectic carbidecan be produced by using this electrode beforeaustempering and the weld metal obtained afteraustempering has a microstructure and mechanicalproperties similar to those of ADI.The mechanicalproperties of welded joints can match the require-ment of ADI.  相似文献   

18.
Ductile iron (DI) is a family of cast alloys that covers a wide range of mechanical properties, depending on its matrix microstructure. For instance, ferritic matrices used in parts, such as automotive suspension components, demand high impact properties and ductility among some of their main requirements. On the other hand, pearlitic and martensitic matrices are used when hardness, strength and wear resistance are of particular concern. When it comes to very high strength parts, ausferritic matrices, typically austempered ductile iron (ADI), are widely used.DI has been employed to replace cast and forged steels in a large number of applications and its production has shown a sustained rate of growth over the last decades.Knowing about failure modes and fracture mechanisms associated to materials with the properties mentioned above is crucial, since they can be of great value for designers of mechanical components.This paper deals with the analysis of fracture surfaces of ductile cast iron generated under different conditions of load application, temperature and environments.The studies include the examination of fracture surfaces obtained by means of tensile tests, impact tests and by samples used to determine fracture toughness properties, where the zones of fatigue pre-crack and monotonic load condition were evaluated. A special case of ductile iron fracture is also examined.The study of the different surfaces permitted to establish patterns that contributed to unveil the fracture mechanisms of ductile iron with different matrices, nodule count, etc.  相似文献   

19.
In the present contribution numerical stress analyses are presented at static and cyclic loads for the fracture mechanical assessment of railway wheels made of austempered ductile iron (ADI) with graphite nodules. The emphasis is placed on the safe dimensioning of the ADI wheel against fracture and fatigue crack growth. Therefore a linear elastic fracture mechanical analysis is carried out assuming hypothetical crack-like defects at exposed places. The assessment rests on fracture mechanical strength parameters of the ADI material, determined experimentally under static and cyclic loading.  相似文献   

20.
The aim of the present study is to characterize mainly fracture toughness as well as the other mechanical properties of austempered ductile iron produced using both single-step and two-step austempering processes. The effect of alloying with Ni and Mo has been investigated. Austempering heat treatment was conducted at temperatures between 260 °C and 390 °C. Plane strain fracture toughness was evaluated for each material and heat treatment condition. It was found that two-step austempering process resulted in improving the fracture toughness of the material, while maintaining reasonable levels of strength. Alloyed samples showed higher fracture toughness than un-alloyed ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号