共查询到20条相似文献,搜索用时 62 毫秒
1.
一种改进的K平均聚类算法 总被引:2,自引:0,他引:2
典型K平均算法中的聚类数k必须是事先给定的确定值,然而实际中很难精确确定,因而无法解决该核算法的实际问题.为此,提出距离代价函数作为最佳聚类数的有效性检验函数,建立了相应的数学模型,并据此提出了一种改进的k值优化算法.实验证明,与传统基于平均值方法实现数据聚类相比,用改进K值优化算法有效提高数据聚类效果. 相似文献
2.
对于模糊聚类算法对初值或者隶属度矩阵敏感,不能保证收敛到全局最优解的问题,文中提出了一种新的进化聚类算法遗传模拟退火聚类算法SAGA-FCM。利用模拟退火算法较强的局部搜索能力和遗传算法较强的全局搜索能力,以避免模糊聚类算法收敛到局部极值或鞍点。实验对不同的人工数据集进行测试,结果分析表明SAGA-FCM算法有比较好的收敛值和收敛速率,具有良好的聚类效果。 相似文献
3.
提出了一种改进的蚁群聚类分析算法,通过改进LF算法中群体相似度函数,加入参数的自适应调整策略,利用短期记忆和网格信息素的局部分布控制蚂蚁的随机移动,并结合蚂蚁速度动态变化、半径递增、强制放下等特性。采用测试数据和不同的算法进行了对比实验分析,仿真实验结果表明,该算法显示出了较高的稳定性和准确率。 相似文献
4.
5.
本文介于k—prototypes和蚁群聚类算法的优,缺点,将两种算法进行改进后,交替使用,相互弥补.扬长避短,形成一种全新的算法,既缩短了聚类时间也能形成高效的聚类结果。 相似文献
6.
7.
为了实现对空间对象的分析,引入了一种空间聚类算法-TGD,并根据在数字化城管系统中的实际应用作了细微的修改。通过该算法将部件分布密集的区域聚集成类,实现了能够发现任意形状密集区域并满足约束条件的功能。 相似文献
8.
9.
10.
一种可分类数据的聚类算法及其应用 总被引:4,自引:1,他引:3
文章给出了一种新颖、高效的用于可分类数据的聚类算法-WeiSC,该算法具有好的精确性,适合大规模数据库中数据的聚类。通过理论推导和实验,证明了算法的正确性和有效性,并结合入侵检测中操作行为的识别,给出了该算法的一个应用实例。 相似文献
11.
模拟退火算法具有良好的全局搜索能力,而蚁群算法具有良好的分布式并行性和正反馈能力.针对样本维数大、数目多时聚类效果不满意的问题,提出了混合的蚁群模拟退火算法,思路是利用K-均值算法的结果作为初值,再使用蚁群算法和模拟退火算法对初值进行调整聚类,结果表明这种算法比较有效. 相似文献
12.
基于模糊C-均值的增量式聚类算法 总被引:1,自引:1,他引:1
给出了一种新的基于FCM的聚类算法,能根据由数据的分布的特性自动获取要聚类的数日,在新增数据后,可以进行增量式聚类,结果对孤立点不敏感,并能完成FCM不具备的非球型或椭球型分布的数据集的聚类,实验结果显示算法的有效性和优越性。 相似文献
13.
14.
基于蚁群算法的模糊C均值聚类的改进研究 总被引:1,自引:0,他引:1
在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。该算法利用了蚁群算法全局优化特征以及较强鲁棒性的特点,将通过蚁群算法得到的聚类中心及个数应用到传统FCM算法中,弥补了传统FCM聚类算法的不足。该算法对图像进行分块处理,并引入多尺度梯度,提高了图像分割的准确性,最后通过实验验证了该算法的有效性及实用性。 相似文献
15.
吕岩 《微电子学与计算机》2012,29(3):31-34
提出了一种改进蚁群文本聚类算法.改进蚁群文本聚类算法利用信息素对蚂蚁随机移动进行控制,使蚂蚁朝着文本向量相对集中的区域移动,缩短蚂蚁寻找文本向量簇的时间,提高聚类效率.采用复旦大学中文文本分类语料库进行仿真实验,实验结果表明,改进蚁群文本聚类算法不仅加快了文本聚类算法的收敛速度,而且提高文本聚类结果的精度. 相似文献
16.
为了研究并提高文本的聚类算法的性能,根据蚁群算法在TSP问题中的应用方法,将其改进引用到文本的聚类处理的研究中。在文本的聚类处理研究中,改变蚂蚁的信息素释放机制,道路节点的聚合方式,从而最终将相似文本进行聚合。对改进的算法进行实验后的结果证明,这种新的算法可以使文本聚类的准确度提高,具有良好的聚类效果,能有效提高查询的文本召回率。蚁群算法在文本聚类中的应用是可行的。 相似文献
17.
18.
很多数据挖掘和机器学习方法仅仅依赖于离散值的属性,这样必须离散连续的属性.文中提出一种基于信息熵理论的数据离散化方法(IED),利用信息熵的思想衡量离散区间是否类似,同时考虑离散区间大小对离散化结果的影响,该方法综合考虑了离散区间与类之间的独立性.实验结果表明,IED显著地提高了Na ve-bayes分类学习精度. 相似文献
19.
基于蚁群算法的文本分类和聚类 总被引:1,自引:1,他引:1
为了研究并提高文本的分类和聚类算法的性能,笔者根据蚁群算法在TSP问题中的应用方法,将其改进引用到文本的分聚类中。在文本聚类中,改变蚂蚁的信息素释放机制,道路节点的聚合方式,最终将相似文本进行聚合。在文本的分类中,将所需要的分类信息装入蚂蚁,蚂蚁根据系统外部所希望的方式将文本分类。实验结果证明,这种新的算法可以使文本分类和聚类的准确度提高,蚁群算法在文本分类聚类中的应用是可行的。 相似文献