首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease P cleaves 5'-precursor sequences from pre-tRNAs. All cellular RNase P holoenzymes contain homologous RNA elements; the eucaryal RNase P RNA, in contrast to the bacterial RNA, is catalytically inactive in the absence of the protein component(s). To understand the function of eucaryal RNase P RNA, knowledge of its structure is needed. Considerable effort has been devoted to comparative studies of the structure of this RNA from diverse organisms, including eucaryotes, primarily fungi, but also a limited set of vertebrates. The substantial differences in the sequences and structures of the vertebrate RNAs from those of other organisms have made it difficult to align the vertebrate sequences, thus limiting comparative studies. To expand our understanding of the structure of diverse RNase P RNAs, we have isolated by PCR and sequenced 13 partial RNase P RNA genes from 11 additional vertebrate taxa representing most extant major vertebrate lineages. Based on a recently proposed structure of the core elements of RNase P RNA, we aligned the sequences and propose a minimum consensus secondary structure for the vertebrate RNase P RNA.  相似文献   

2.
Eukaryotic ribonuclease P (RNase P) enzymes require both RNA and protein subunits for activity in vivo and in vitro. We have undertaken an analysis of the complex RNA subunit of the nuclear holoenzyme in an effort to understand its structure and its similarities to and differences from the bacterial ribozymes. Phylogenetic analysis, structure-sensitive RNA footprinting, and directed mutagenesis reveal conserved secondary and tertiary structures with both strong similarities to the bacterial consensus and distinctive features. The effects of mutations in the most highly conserved positions are being used to dissect the functions of individual subdomains.  相似文献   

3.
4.
The effect of two naturally occurring (retinol and all-trans retinoic acid) and two synthetic (isotretinoin and acitretin) analogs of vitamin A (retinoids) on tRNA biogenesis was investigated employing the RNase P of Dictyostelium discoideum as an in vitro experimental system. RNase P is an ubiquitous and essential enzyme that endonucleolytically cleaves all tRNA precursors to produce the mature 5' end. All retinoids tested revealed a dose-dependent inhibition of RNase P activity, indicating that these compounds may have a direct effect on tRNA biogenesis. Detailed kinetic analysis showed that all retinoids behave as classical competitive inhibitors. The Ki values determined were 1475 microM for retinol, 15 microM for all-trans retinoic acid, 20 microM for isotretinoin, and 8.0 microM for acitretin. On the basis of these values acitretin is a 184, 2.5, and 1.9 times more potent inhibitor, as compared with retinol, isotretinoin, and all-trans retinoic acid, respectively. Taking into account that retinoids share no structural similarities to precursor tRNA, it is suggested that their kinetic behavior reflects allosteric interactions of these compounds with hydrophobic site(s) of D. discoideum RNase P.  相似文献   

5.
The secondary structure of bacterial RNase P RNA, a ribozyme responsible for the maturation of the 5' end of tRNAs, is well established on the basis of sequence comparison analysis. RNase P RNA secondary structures fall into two types, A and B, which share a common core formed by the assembly of two main folding domains, but differ in their peripheral elements.A revised alignment of 137 available sequences reveals new covariations allowing for the refinement of both types of secondary structures. Phylogenetic evidence is thus provided for the extension of stems P11, P14, P19, P10.1 and P15.1 through further canonical base-pairs or GAellipsisGA mismatches. These refinements led in turn to a new organization of the catalytic core, with coaxial stackings of helices P2 and P19 as well as P1 and P4. New inter-domain tertiary interactions involve loop L9 and helix P1 and loop L8 with helix P4. These features were incorporated into atomic-scale 3D models of RNase P RNA for representatives of each structural type, namely Escherichia coli and Bacillus subtilis. In each model, the juxtaposition of the core helices creates a cradle onto which the pre-tRNA substrate binds with most evolutionarily conserved residues converging towards the cleavage site. The inner cores of both types are stabilized similarly, albeit by different peripheral elements, emphasizing the modular and hierarchical organisation of the architecture of RNase P RNAs. Similarities are thus apparent between the type A modules, P16/P17/P6 and P13/P14, and their type B analogs, P5.1/P15.1 and P10. 1/P10.1a, respectively. Other noteworthy features of these models include compactness and good agreement with published crosslinking data.  相似文献   

6.
To enable application of postgenomic evolutionary approaches to understand the divergence of behavior and function in ribonucleases (RNases), the impact of divergent sequence on the divergence of tertiary and quaternary structure is analyzed in bovine pancreatic and seminal ribonucleases, which differ by 23 amino acids. In a crystal, seminal RNase is a homodimer joined by two "antiparallel" intersubunit disulfide bonds between Cys-31 from one subunit and Cys-32' from the other and having composite active sites arising from the "swap" of residues 1-20 from each subunit. Specialized Edman degradation techniques have completed the structural characterization of the dimer in solution, new cross-linking methods have been developed to assess the swap, and sequence determinants of quaternary structure have been explored by protein engineering using the reconstructed evolutionary history of the protein family as a guide. A single Cys at either position 32 (the first to be introduced during the divergent evolution of the family) or 31 converts monomeric RNase A into a dimer. Even with an additional Phe at position 31, another residue introduced early in the seminal lineage, swap is minimal. A hydrophobic contact formed by Leu-28, however, also introduced early in the seminal lineage, increases the amount of "antiparallel" connectivity of the two subunits and facilitates swapping of residues 1-20. Efficient swapping requires addition of a Pro at position 19, a residue also introduced early in the divergent evolution of the seminal RNase gene. Additional cysteines required for dimer formation are found to slow refolding of the protein through formation of incorrect disulfide bonds, suggesting a paradox in the biosynthesis of the protein. Further studies showed that the dimeric form of seminal RNase known in the crystal is not the only form in vivo, where a substantial amount of heterodimer is known. These data complete the acquisition of the background needed to understand the evolution of new structure, behavior, and function in the seminal RNase family of proteins.  相似文献   

7.
External guide sequences (EGSs) are small RNA molecules which consist of a sequence complementary to a target mRNA and render the target RNA susceptible to degradation by ribonuclease P (RNase P). EGSs were designed to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 for degradation. These EGSs were shown to be able to direct human RNase P to cleave the TK mRNA sequence efficiently in vitro. A reduction of about 80% in the expression level of both TK mRNA and protein was observed in human cells that steadily expressed an EGS, but not in cells that either did not express the EGS or produced a "disabled" EGS which carried a single nucleotide mutation that precluded RNase P recognition. Thus, EGSs may represent novel gene-targeting agents for inhibition of gene expression and antiviral activity.  相似文献   

8.
9.
The introduction and development of soft lenses and rigid gas-permeable lenses has ushered in a new era in fitting athletes with contact lenses. Many of the well-known disadvantages associated with polymethylmethacrylate (PMMA)-type lenses have been either eliminated or minimized. Fitting athletes with contact lenses must still be viewed with caution, however, since athletes' visual needs are usually much more demanding than those of the general public. An indiscriminate choice of lens design can adversely affect athletic performance and may even create a hazardous situation. An intelligent choice of lens can provide some subtle advantages that may improve athletic performance and provide the margin for victory.  相似文献   

10.
STRUCTURELAB is a computational system that has been developed to permit the use of a broad array of approaches for the analysis of the structure of RNA. The goal of the development is to provide a large set of tools that can be well integrated with experimental biology to aid in the process of the determination of the underlying structure of RNA sequences. The approach taken views the structure determination problem as one of dealing with a database of many computationally generated structures and provides the capability to analyze this data set from different perspectives. Many algorithms are integrated into one system that also utilizes a heterogeneous computing approach permitting the use of several computer architectures to help solve the posed problems. These different computational platforms make it relatively easy to incorporate currently existing programs as well as newly developed algorithms and to best match these algorithms to the appropriate hardware. The system has been written in Common Lisp running on SUN or SGI Unix workstations, and it utilizes a network of participating machines defined in reconfigurable tables. A window-based interface makes this heterogeneous environment as transparent to the user as possible.  相似文献   

11.
Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.  相似文献   

12.
The biosynthesis of dTMP has been studied in cell extracts of two different members of the domain Archaea, Methanosarcina thermophila and Sulfolobus solfataricus. In M. thermophila, the dTMP was formed from dUMP and [methylene-2H2]-5,10-methylenetetrahydrosarcinapterin generated in situ from added [methylene-2H2] formaldehyde and the tetrahydrosarcinapterin present in the cell extract. In S. solfataricus, the 5,10-methyl-enetetrahydro derivative of a synthetic fragment of sulfopterin, the modified folate present in these cells, served as the C1 donor. These data indicate that the Archaea thymidylate synthases carry out the same basic reaction which occurs in other organisms but use the 5,10-methylenetetrahydro derivatives of modified folates as C1 donors.  相似文献   

13.
Two-dimensional NMR spectroscopy has been used to monitor the exchange of backbone amide protons in ribonuclease A (RNase A) and its subtilisin-cleaved form, ribonuclease S (RNase S). Exchange measurements at two different pH values (5.4 and 6.0) show that the exchange process occurs according to the conditions of the EX2 limit. Differential scanning calorimetry measurements have been carried out in 2H2O under conditions analogous to those used in the NMR experiments in order to determine the values of DeltaCp, DeltaHu and Tm, corresponding to the thermal denaturation of both proteins. For the amide protons of a large number of residues in RNase A, the free energies at 25 degreesC for exchange competent unfolding processes are much lower than the calorimetric denaturation free energies, thus showing that exchange occurs through local fluctuations in the native state. For 20 other protons, the cleavage reaction had approximately the same effect on the exchange rate constants than on the equilibrium constant for unfolding, indicating that those protons exchange by global unfolding. There is a good agreement between the residues to which these protons belong and those involved in the putative folding nucleation site identified by quench-flow NMR studies. The unfolding free energies of the slowest exchanging protons, DeltaGex, as evaluated from exchange data, are much larger than the calorimetric free energies of unfolding, DeltaGu. Given the agreement between DeltaDeltaGex(A-S), the difference in free energy from exchange for a given proton of the two proteins, and DeltaDeltaGu(A-S), the difference in the calorimetric free energy of the two proteins, the discrepancy indicates that the intrinsic exchange rates in the unfolded state of those protons cannot be approximated by those measured in short unstructured peptides and, consequently, exchange for those protons in RNase A and S must occur through a rather structured denatured state.  相似文献   

14.
15.
The ribonucleoprotein ribonuclease P (RNase P) cleaves all tRNA precursors endonucleolitically to produce the mature 5'-end. Dictyostelium discoideum RNase P displays an absolute requirement for Mg2+. Only the alkaline earth cations Ca2+, Sr2+, and Ba2+, under appropriate conditions can substitute to some extent for Mg2+. The transition metals Mn2+, Co2+, Ni2+, and Cd2+ are efficient inhibitors of the enzyme activity. Ca2+, Sr2+ and Ba2+, in the presence of Mg2+, exhibit a bimodal action at the kinetic phase of the reaction. Kinetic analysis of the activation phase revealed that Ca2+, Sr2+, or Ba2+ attached on a specific site of RNase P act as nonessential-noncompetitive activators. Further additions of Ca2+, Sr2+, or Ba2+ cause noncompetitive inhibition on the RNase P reaction, indicating that RNase P possesses a second binding site responsible for the inhibitory effect of Ca2+, Sr2+, and Ba2+. Both activator and inhibitory sites can be occupied by Ca2+, Sr2+, or Ba2+ at the same time.  相似文献   

16.
In eukaryotes, ribonuclease P (RNase P) requires both RNA and protein components for catalytic activity. The eukaryotic RNase P RNA, unlike its bacterial counterparts, does not possess intrinsic catalytic activity in the absence of holoenzyme protein components. We have used a sensitive photoreactive cross-linking assay to explore the substrate-binding environment for different eukaryotic RNase P holoenzymes. Protein components from the Tetrahymena thermophila and human RNase P holoenzymes form specific products in photoreactions containing [4-thio]-uridine-labeled pre-tRNAGln. The HeLa RNase P RNA in neither the presence nor the absence of holoenzyme protein components formed cross-link products to the pre-tRNAGln probe. Parallel photo-cross-linking experiments with the Escherichia coli RNase P holoenzyme revealed that only the bacterial RNase P RNA forms specific substrate photoadducts. A protein-rich active site for the eukaryotic RNase P represents one unique feature that distinguishes holoenzyme organization between bacteria and eukaryotes.  相似文献   

17.
We propose a new method for detecting conserved RNA secondary structures in a family of related RNA sequences. Our method is based on a combination of thermodynamic structure prediction and phylogenetic comparison. In contrast to purely phylogenetic methods, our algorithm can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability. The procedure constructs a prediction only for those parts of sequences that are consistent with a single conserved structure. Our implementation produces reasonable consensus structures without user interference. As an example we have analysed the complete HIV-1 and hepatitis C virus (HCV) genomes as well as the small segment of hantavirus. Our method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV.  相似文献   

18.
A method was evaluated to control for off-resonance saturation in noninvasive magnetic resonance imaging with continuous arterial spin labeling of cerebral blood flow. In phantoms and humans, application of amplitude-modulated radio-frequency irradiation during the control image corrected for saturation across the whole brain and made possible cerebral blood flow imaging in multiple sections at arbitrary angles to the labeling plane.  相似文献   

19.
Fourier transform-infrared (FTIR) spectroscopy has been used to test for the presence of nonrandom structure in thermally denatured ribonuclease A (RNase A) at pH* 2.0 (uncorrected pH measured in D2O). The amide I spectral region of the native and thermally denatured protein was compared. A substantial decrease in the amount of beta-sheet and alpha-helix and a corresponding increase in the amount of turn and unordered structure was observed on thermal denaturation. The results indicate that thermally denatured RNase A contains significant amounts of secondary structure (11% helix and 17% beta-sheet), consistent with previous results reported for circular dichroism, and with a relatively compact structure, as revealed by dynamic light scattering. These results are in contrast to those of amide protection experiments reported recently [Robertson, A.D., & Baldwin, R.L. (1991) Biochemistry 30, 9907-9914] which indicated no stable hydrogen-bonded structure under these experimental conditions. Possible explanations for this apparent discrepancy are given.  相似文献   

20.
The P4-P6 domain RNA from the Tetrahymena self-splicing group I intron is an independent unit of tertiary structure that, in the kinetic folding pathway, folds before the rest of the intron and then stabilizes the remainder of the intron's tertiary structure. We have employed temperature gradient gel electrophoresis (TGGE) to examine the unfolding of the tertiary structure of P4-P6. In 0.9 mM Mg2+, the global tertiary fold of the molecule has a melting temperature of approximately 40 degreesC and is completely unfolded by 60 degreesC. Calculated thermodynamic parameters for folding of P4-P6 are DeltaH degrees' = -28 +/- 3 kcal/mol and DeltaS degrees' = -91 +/- 8 eu under these conditions. Chemical probing of the P4-P6 tertiary structure using dimethyl sulfate and CMCT confirms that these TGGE experiments monitor the unfolding of the global tertiary fold of the domain and that the secondary structure is largely unaffected over this temperature range. Thus, unlike the entropically driven P1 docking and guanosine binding steps of Tetrahymenagroup I intron self-splicing, which have positive or zero DeltaH terms, P4-P6 tertiary structure formation is stabilized by a negative DeltaH term. This implies that enthalpically favorable hydrogen bond formation, nucleotide base stacking, and/or binding of Mg2+ within the folded structure are responsible for stabilizing the P4-P6 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号