首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this letter, we propose a blind carrier frequency offset (CFO) estimator with high resolution and high bandwidth efficiency for orthogonal frequency-division multiplexing (OFDM) systems. The proposed estimator utilizes minimum output variance to estimate CFO. Simulation results show that the proposed estimator is highly accurate and reliable for OFDM systems.  相似文献   

2.
Carrier frequency offset (CFO) estimation is a critical problem in orthogonal frequency-division multiplexing (OFDM) systems. This letter proposes a blind CFO estimator based on smoothing the signal power spectrum. A closed-form CFO estimate is also presented, which greatly reduces the computational complexity of the proposed method. Analysis and simulation results show that the proposed estimator is very effective for OFDM systems.  相似文献   

3.
Orthogonal frequency division multiplexing (OFDM) systems with direct-conversion receiver (DCR) are vulnerable to carrier frequency offset (CFO), dc offset (DCO) and in-phase/quadrature (I/Q) imbalance. In this paper, we propose blind estimator for joint estimation of CFO, DCO and I/Q imbalance in OFDM systems with DCR. Simulation results show that performance of proposed estimator approaches Cramér-Rao lower bound (CRLB) asymptotically, which demonstrates its effectiveness.  相似文献   

4.
An efficient feedforward blind carrier frequency offset (CFO) estimator for orthogonal frequency division multiplexing (OFDM) systems with general symbol constellation is presented. The proposed estimator requires only one OFDM symbol period to blindly and accurately estimate the CFO in Gaussian and multipath fading channels.  相似文献   

5.
This letter proposes a blind carrier frequency offset (CFO) estimator for orthogonal frequency-division multiplexing (OFDM) systems based on the frequency analysis of the received signal, and derives a closed-form CFO estimate. Since only one OFDM symbol is utilized instead of multi-symbol averaging, the proposed method is effective even when the CFO is time varying. Finally, analysis and simulation results indicate the outstanding performance of the proposed estimator.  相似文献   

6.
We address the problem of carrier frequency offset (CFO) synchronization in OFDM communications systems in the context of frequency-selective fading channels. We consider the case where the transmitted symbols have constant modulus, i.e., PSK constellations. A novel blind CFO estimation algorithm is developed. The new algorithm is shown to greatly outperform a previously published blind technique that exploits the fact that practical OFDM systems are not fully loaded. Further, the proposed algorithm is consistent even when the system is fully loaded. Finally, the proposed CFO estimator is obtained via a one-dimensional search, the same as with the existing virtual subcarrier-based estimator, but achieves a substantial gain in performance (10-dB SNR or one order of magnitude in CFO MSE).  相似文献   

7.
Orthogonal frequency division multiplexing (OFDM) systems are highly sensitive to carrier frequency offset (CFO), especially in doubly-selective fading environment. Cyclostationarity-based blind synchronization methods are appealing in high-data-rate applications and low signal-to-noise regions. However, the cyclostationarity has not been exploited for frequency synchronization of OFDM systems under doubly-selective fading channels. In this paper, we derive the close-form second order cyclic statistics of the received OFDM signal in presence of CFO, by modeling the doubly-selective fading channel with basis expansion model. Both transmitter-induced cyclostationarity and doubly-selective channel information are contained in the derived cyclic moments, and they are efficiently utilized for CFO estimation. Simulation results demonstrate that the proposed estimator provides significant improvements on frequency synchronization performance.  相似文献   

8.
Blind Frequency Synchronization in OFDM via Diagonality Criterion   总被引:2,自引:0,他引:2  
In this paper, we address the problem of blind carrier frequency offset (CFO) estimation in orthogonal frequency-division multiplexing (OFDM) systems in the case of frequency-selective channels. CFO destroys the orthogonality between the carriers leading to nondiagonal signal covariance matrices in frequency domain. The proposed blind method enforces a diagonal structure by minimizing the power of nondiagonal elements. Hence, the orthogonality property inherent to OFDM transmission with cyclic prefix is restored. The method is blind since it does not require a priori knowledge of the transmitted data or the channel, and does not need any virtual subcarriers. A closed-form solution is derived, which leads to accurate and computationally efficient CFO estimation in multipath fading environments. Consistency of the estimator is proved and the convergence rate as a function of the sample size is analyzed as well. To assess the large sample performance, we derive the CramÉr–Rao bound (CRB) for the blind CFO estimation problem. The CRB is derived assuming a general Gaussian model for the OFDM signal, which may be applied to both circular and noncircular modulations. Finally, simulation results on CFO estimation are reported using a realistic channel model.  相似文献   

9.
In this paper we consider the problem of blind carrier-frequency offset (CFO) estimation for pulse-shaping orthogonal frequency-division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM). In particular, under the assumption of low signal-to-noise ratio, three maximum-likelihood (ML) CFO estimators for non-dispersive channels are derived. Due to their significant computational complexity a more feasible closed-form CFO synchronization algorithm is considered. The performance of the derived blind estimators is assessed via computer simulations and compared with that of a blind CFO estimator previously proposed in the literature, exploiting the second-order cyclostationarity property of the OFDM/OQAM signal.  相似文献   

10.
Frequency synchronization has a great importance in preserving the performance of the underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems. The carrier frequency offset (CFO) estimation can be blind or data‐aided. In this paper, the Zadoff‐Chu (ZC) sequences are used for OFDM synchronization in UWA communications, and they are compared with different data‐aided algorithms. We propose a low‐complexity algorithm for CFO estimation based on ZC sequences. Also, a joint equalization and CFO compensation scheme for UWA‐OFDM communication systems is presented. Simulation results demonstrate that the proposed CFO estimation algorithm allows estimation of the CFO accurately with a simple implementation in comparison with the traditional schemes. Also, the performance of the UWA‐OFDM system can be preserved in the presence of frequency offsets.  相似文献   

11.
In this paper, an extended Hinfin filter-based carrier frequency offset (CFO) estimator is proposed for orthogonal frequency division multiplexing (OFDM) systems. The design criterion of the proposed estimator is to minimize the effect of worst-case disturbances (noise and model error) on the CFO estimation errors. This data-aided CFO estimator does not require any statistical knowledge of the disturbances. Moreover, its computational complexity is similar to that of the extended Kalman filter (EKF) method. Simulation results show that the proposed method can combat ICI effectively and obtain better bit error rate (BER) performance in the unknown noise for OFDM systems.  相似文献   

12.
We perform bit-error-rate (BER) analysis of orthogonal frequency division multiplexing (OFDM) systems impaired by both direct current (DC) offset and carrier frequency offset (CFO) in multipath Rayleigh fading channels. Since the performance of OFDM systems is sensitive to the CFO, it is necessary to estimate and correct the CFO at the receiver. The existence of DC offset degrades the performance of CFO estimator and results in large residual CFO after compensation. Moreover, the process of CFO compensation spreads the DC offset energy and causes DC offset interference to all subcarriers. By deriving the BER formula for OFDM systems employing binary phase-shift keying modulation, the dependency of BER on the DC offset, CFO, and estimated CFO is accurately quantified. Simulation results validate the correctness of our theoretical analysis.  相似文献   

13.
A recursive maximum likelihood carrier frequency offset (CFO) estimator is proposed in this work, where redundancy information contained in the cyclic prefix of multiple consecutive orthogonal frequency‐division multiplexing (OFDM) symbols is exploited in an efficient recursive fashion. Because the estimator is based on multiple OFDM symbols, the time‐varying CFO must be considered. We investigate the effect of time‐varying CFO on the performance of the estimator and the trade‐off between fast tracking ability and low estimation variance. We show that, without channel noise, the mean squared error (MSE) of estimation due to CFO estimation variation increases approximately quadratically with n, where n is the number of OFDM symbols used for CFO estimation (estimation window size), whereas the MSE due to channel noise decreases proportionally to 1/n (approximately) if the CFO is constant. A closed‐form expression of the optimal estimation window size (approximately) is derived by minimizing the MSE caused by both time‐varying CFO and channel noise. For wireless systems with time‐varying rate of change for CFO, the proposed estimator can be implemented adaptively. In addition, typical optimal estimation window sizes for WiMAX, DVB‐SH and MediaFLO systems are evaluated as an example. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study carrier frequency offset (CFO) and symbol timing offset (STO) estimation in the uplink of multiuser offset QAM filter bank multicarrier (FBMC) communication systems. A low-complexity frequency-domain CFO estimator using periodical training sequence is proposed. Also a good estimate of STO is obtained by maximizing the energy of subcarriers subject to training sequence at the output of analysis filter bank. Furthermore we derive the theoretical MSE for the proposed CFO estimator. Computer simulations show that the derived MSE matches the simulated MSE closely. Compared with state-of-the-art time domain estimator, the proposed estimator achieves better performance with a lower computational complexity.  相似文献   

15.
Orthogonal frequency division multiplexing (OFDM) systems are known to be sensitive to carrier frequency offset (CFO). This paper is concerned with the CFO estimation for multiple input multiple output (MIMO) systems employing OFDM waveforms. We present two approaches to derive maximum likelihood (ML) pilot-assisted frequency estimators that use either two or multiple identical training symbols. It is shown that the resulting ML frequency estimators are similar to maximum ratio combining versions of Moose estimator and Yu–Su solution, respectively. Numerical examples demonstrate that the proposed frequency estimators are robust against spatial Signal-to-noise ratio (SNR) variation and they yield performance superior to that of the corresponding single-antenna system.  相似文献   

16.
OFDM系统对载波频偏(CFO)非常敏感,CFO破坏了子载波正交性从而引起载波间干扰(ICI)导致系统性能下降.本文分析了CFO对解调数据二阶统计特性的影响,提出了一种适用于频率选择性衰落信道下的非数据辅助的频偏估计方法,利用解调数据二阶统计量矩阵的对角能量提取CFO信息,可实现CFO的精确估计.该方法不需要发送导频数据和信道响应先验知识,因而提高了系统传输效率.文中同时给出了估计的闭环求解方法,大大简化了实现复杂度.最后对算法在多径信道环境下进行了仿真,结果表明本文提出的估计方法在低SNR时仍具有较好的估计性能.  相似文献   

17.
OFDM Carrier Synchronization Based on Time-Domain Channel Estimates   总被引:2,自引:0,他引:2  
Carrier frequency synchronization is critical to the quality of signal reception in OFDM systems. This paper presents an approximate maximum-likelihood (ML) carrier frequency offset (CFO) estimation scheme based on time-domain channel estimates which retain the CFO information in the form of phase rotation. The proposed ML CFO estimate is investigated under static as well as time-varying fading channels. Statistical properties of the estimator are examined and Cramer-Rao lower bound (CRLB) is derived. Theoretical analysis and numerical simulations show that the proposed CFO estimator renders excellent performance with lower computational complexity. The proposed CFO estimate also has an advantage of allowing for more flexible pilot patterns  相似文献   

18.
In wireless communication systems, equalization is one of the most important schemes to improve the system performance. This paper consists of two main parts. The first part presents a blind carrier frequency offset (CFO) estimation scheme based on discrete cosine transform (DCT). The second part presents a joint low‐complexity equalization, and CFO compensation in orthogonal frequency division multiplexing (OFDM) systems. Moreover, in the second part, we present a joint low‐complexity regularized zero‐forcing (JLRZF) equalizer based on the proposed CFO estimation scheme. Simulation results show that the proposed configuration has the ability to perform blind CFO estimation and enhance the system performance in the presence of estimation errors.  相似文献   

19.
This letter presents an iterative carrier frequency offset (CFO) estimator based on the minimum variance distortionless response criterion for interleaved orthogonal frequency division multiple access uplink systems, without using specific training sequences. The proposed estimator iteratively searches for the correct CFO vector by minimizing the objective function using a first-order Taylor series approximation of the CFO vector with the one initially given. However, the proposed estimator is not only can estimate CFO, but also has less computational load. Several computer simulation results are provided for illustrating the effectiveness of the blind estimate approach.  相似文献   

20.
This paper proposes a carrier frequency offset (CFO) estimation scheme for OFDM systems over fast fading channels. In the proposed scheme, exploiting the multiple preambles with the identical values, we estimate the CFO over fast fading channels. In particular, we improve the performance of the CFO estimator by applying the overlapped windows to preambles. Through simulations, we validate the proposed estimation scheme by showing the effectiveness of the proposed estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号