首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optical implementation of the fractional Fourier transform (FRT) with broadband illumination is proposed by use of a single imaging element, namely, a blazed diffractive lens. The setup displays an achromatized version of the FRT of order P of any two-dimensional input function. This fractional order can be tuned continuously by shifting of the input along the optical axis. Our compact and flexible configuration is tested with a chirplike input signal, and the good experimental results obtained support the theory.  相似文献   

2.
Fast numerical algorithm for the linear canonical transform   总被引:1,自引:0,他引:1  
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.  相似文献   

3.
The strong chromatic distortion associated with diffractive optical elements is fully exploited to achieve an achromatic optical Fourier transformation under broadband point-source illumination by means of an air-spaced diffractive lens doublet. An analysis of the system is carried out by use of the Fresnel diffraction theory, and the residual secondary spectrum (both axial and transversal) is evaluated. We recognize that the proposed optical architecture allows us to tune the scale factor of the achromatic Fraunhofer diffraction pattern of the input by simply moving the diffracting screen along the optical axis of the system. The performance of our proposed optical setup is verified by several laboratory results.  相似文献   

4.
《Journal of Modern Optics》2013,60(12):2379-2383
The application of the fractional Fourier transform (FRT) to optical propagation problems is re-examined as a reply to the recent comment by S. Abe and J. T. Sheridan. It is shown that their criticism to our previous consideration of Fresnel diffraction in the context of the FRT is not appropriate.  相似文献   

5.
Jiang Z  Lu Q  Zhao Y 《Applied optics》1997,36(32):8455-8458
The fractional Fourier transform (FRT) is becoming important in optics and can be used as a new tool to analyze many optical problems. However, we point out that the FRT might be much more sensitive to parameters than the conventional Fourier transform. This sensitivity leads to higher requirements on the optical implementation. On the other hand, high parametric sensitivity can be used in optical diffraction measurements. We give the first proposal, to our knowledge, of the FRT's applications in optical measurement.  相似文献   

6.
García J  Mas D  Dorsch RG 《Applied optics》1996,35(35):7013-7018
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed.  相似文献   

7.
Chirp filtering in the fractional Fourier domain   总被引:2,自引:0,他引:2  
In the Wigner domain of a one-dimensional function, a certain chirp term represents a rotated line delta function. On the other hand, a fractional Fourier transform (FRT) can be associated with a rotation of the Wigner-distribution function by an angle connected with the FRT order. Thus with the FRT tool a chirp and a delta function can be transformed one into the other. Taking the chirp as additive noise, the FRT is used for filtering the line delta function in the appropriate fractional Fourier domain. Experimental filtering results for a Gaussian input function, which is modulated by an additive chirp noise, are shown. Excellent agreement between experiments and computer simulations is achieved.  相似文献   

8.
Abstract

Generalized Collins formulae for arbitrary imperfect ABCD optical systems with small deformations (misalignments and/or deviations from ideal optical operations) are obtained in both the space domain and the frequency domain. These formulae can provide a unified way to analyse the performance of a practical optical system in both domains, including the ideal as its special case. Particularly, it shows that a reciprocally symmetrical ABCD system with small deformations can implement so-called almost-fractional Fourier transformation (FRT) simultaneously in both domains with the same order. Some other applications in practice are also discussed to verify the effectiveness of our proposed method.  相似文献   

9.
Describes an optically-based measurement mechanism which realizes a totally noncontact assessment of the most important mechanical properties of structural materials - namely effective stiffness and Poisson ratio. These parameters are sensitive indicators of material integrity. The technique uses laser generated broadband ultrasound as a probe and interferometric optical detection as the detector again exploiting the broadband capability of optics in both space and time. Both detection and excitation systems are most conveniently realized in practical systems through optical fiber linkages. Observing the coupled waveforms between source and detector as a function of source: detector separation after a space : time Fourier transform yields a set of dispersion curves for the ultrasonic (typically Lamb wave) transfer function of the sample. This, in turn, can be inverted using curve fitting routines to obtain effective values of modulus and stiffness. An initial assessment of this inversion process is presented and demonstrates that the effective modulus can be extracted with a confidence level of better than a few percent with slightly larger errors in the Poisson ratio.  相似文献   

10.
The focal shift for a lens of finite value of Fresnel number can be defined in terms of the second moment of the intensity distribution in transverse planes. The connection with the optical transfer function is described. The specification of the focused amplitude in terms of the fractional Fourier transform is discussed, and the connections among the fractional Fourier transform, the Wigner distribution, and the ambiguity function are described, leading to a model for effects of Fresnel number in terms of a rotation in phase space. The uncertainty principle is discussed, including the significance of the beam propagation factor M2 and the width of optical fiber beam modes. Calculation of the moments in terms of the modulus and the phase of the illuminating wave is presented, and the use of the Kaiser-Teager energy operator is also described.  相似文献   

11.
Abstract

A general and systematic analysis about the relationship between ABCD optical systems and the fractional Fourier transform (FRT) is provided. It is shown that the FRT can be implemented with an ABCD system but usually different scaling factors for the input and output functions must be used. The requirement for the property of direct additivity of the FRT order is derived for a cascade system; and the method of finding the final order of the FRT for a general cascade ABCD system by using the similarity theorem is discussed. As an application example of the results, an approach to observation of the FRT of continuously variable orders with a scale invariant input is demonstrated.  相似文献   

12.
Optoelectronic information encryption with phase-shifting interferometry   总被引:13,自引:0,他引:13  
A technique that combines the high speed and the high security of optical encryption with the advantages of electronic transmission, storage, and decryption is introduced. Digital phase-shifting interferometry is used for efficient recording of phase and amplitude information with an intensity recording device. The encryption is performed by use of two random phase codes, one in the object plane and another in the Fresnel domain, providing high security in the encrypted image and a key with many degrees of freedom. We describe how our technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. Electronic decryption can be performed with a one-step fast Fourier transform reconstruction procedure. Experimental results for both systems including a lensless setup are shown.  相似文献   

13.
Noach S  Lewis A  Arieli Y  Eisenberg N 《Applied optics》1996,35(19):3635-3639
Diffractive elements can be designed for spectrum shaping in the Fourier or Fresnel plane by iterative methods. It is necessary to use a Fourier lens and the wavelength for which the diffractive elements were designed to get the required spectrum shaping at the Fourier plane. Using a different wavelength will cause chromatic aberration. We deal with the combination of refractive and diffractive elements and two or more different diffractive elements on the same element to get appropriate beam shaping of light sources with a multiple spectral output. Simulations are preformed that transform the profile of a He-Ne laser with a Nd:YAG laser source, and shape the trapezoidal beam profile of an excimer laser into a Gaussian beam is also considered.  相似文献   

14.
An analytical and concise formula is derived for the fractional Fourier transform (FRT) of partially coherent beams that is based on the tensorial propagation formula of the cross-spectral density of partially coherent twisted anisotropic Gaussian-Schell-model (GSM) beams. The corresponding tensor ABCD law performing the FRT is obtained. The connections between the FRT formula and the generalized diffraction integral formulas for partially coherent beams passing through aligned optical systems and misaligned optical systems are discussed. With use of the derived formula, the transformation and spectrum properties of partially coherent GSM beams in the FRT plane are studied in detail. The results show that the fractional order of the FRT has strong effects on the transformation properties and the spectrum properties of partially coherent GSM beams. Our method provides a simple and convenient way to study the FRT of twisted anisotropic GSM beams.  相似文献   

15.
The truncated fractional Fourier transform (FRT) is applied to a partially coherent Gaussian Schell-model (GSM) beam. The analytical propagation formula for a partially coherent GSM beam propagating through a truncated FRT optical system is derived by using a tensor method. Furthermore, we report the experimental observation of the truncated FRT for a partially coherent GSM beam. The experimental results are consistent with the theoretical results. Our results show that initial source coherence, fractional order, and aperture width (i.e., truncation parameter) have strong influences on the intensity and coherence properties of the partially coherent beam in the FRT plane. When the aperture width is large, both the intensity and the spectral degree of coherence in the FRT plane are of Gaussian distribution. As the aperture width decreases, the diffraction pattern gradually appears in the FRT plane, and the spectral degree of coherence becomes of non-Gaussian distribution. As the coherence of the initial GSM beam decreases, the diffraction pattern for the case of small aperture widths gradually disappears.  相似文献   

16.
Yu FT  Lu G 《Applied optics》1994,33(23):5262-5270
We discuss the semicontinuous short-time Fourier transform (STFT) and the semicontinual wavelet transform (WT) with Fourier-domain processing, which is suitable for optical implementation. We also systematically analyze the selection of the window functions, especially those based on the biorthogonality and the orthogonality constraints for perfect signal reconstruction. We show that one of the best substitutions for the Gaussian function in the Fourier domain is a squared sinusoid function that can form a biorthogonal window function in the time domain. The merit of a biorthogonal window is that it could simplify the inverse STFT and the inverse WT. A couple of optical architectures based on Fourier-domain processing for the STFT and the WT, by which real-time signal processing can be realized, are proposed.  相似文献   

17.
We report the experimental observation of the fractional Fourier transform (FRT) for a partially coherent optical beam with Gaussian statistics [i.e., partially coherent Gaussian Schell-model (GSM) beam]. The intensity distribution (or beam width) and the modulus of the square of the spectral degree of coherence (or coherence width) of a partially coherent GSM beam in the FRT plane are measured, and the experimental results are analyzed and agree well with the theoretical results. The FRT optical system provides a convenient way to control the properties, e.g., the intensity distribution, beam width, spectral degree of coherence, and coherence width, of a partially coherent beam.  相似文献   

18.
Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high‐order Fourier components are lost, resulting in extinction of high‐resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high‐aspect‐ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free‐space optical wavefront, but also be readily integrated into micro‐optical platforms due to its compact size.  相似文献   

19.
Hua J  Liu L  Li G 《Applied optics》1997,36(32):8490-8492
The scaled fractional Fourier transform is suggested and is implemented optically by one lens for different values of phi and output scale. In addition, physically it relates the FRT with the general lens transform-the optical diffraction between two asymmetrically positioned planes before and after a lens.  相似文献   

20.
Abstract

The propagation of polychromatic spatially coherent light through an optical system, developed for achromatizing Fresnel diffraction patterns, is discussed using the Wigner distribution function. This approach is applied for obtaining achromatic self-images. The residual chromatic aberration is analysed, and some experimental results are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号