首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-doped TiO2 thin films were synthesized on quartz substrates by sol-gel method. Atomic force microscopy results indicate that the surfaces of the Ti1 − xCoxO2 (0 ≤ x ≤ 0.10) films become smooth and compact with increasing Co content. X-ray diffraction results show that all the films are rutile phase structure and Co doping leads to lattice contraction. X-ray photoelectron spectroscopy results reveal that the predominant oxidation state of Co is divalent. Peak positions of Raman-active modes (B2g, A1g and Eg) shift to lower frequency with increasing Co content. The refractive index n at 670 nm from transmittance spectra increases with increasing Co content. The OBG varies between 3.10 and 3.26 eV. Note that optical band gap (OBG) first increases and then decreases with increasing Co content, reaching its maximum value when x is 0.03. These results suggest that the increasing mechanism of OBG is related to the decrease of grain size, compressive stress, and reduction of rutile TiO2, and the decreasing mechanism of OBG is involved with defect and impurity. The competition of the two mechanisms leads to the strange change of OBG.  相似文献   

2.
Anatase TiO2 film (100-1000 nm thick) grown on glass, sapphire (0001), and Si (100) substrates by pulsed dc-magnetron reactive sputtering were evaluated for stress and strain analysis using Raman spectroscopy and curvature measurement techniques. The X-ray analysis revealed that films prepared for this study were purely anatase, and the measurements indicate that the film exhibit that (101) is the preferred growth orientation of the crystallites, especially for the film thicker than 100 nm. Curvature measurements and Raman spectroscopy, with 514.5 nm excitation wavelength, phonon line shift were used for stress analysis. A comparison between Raman lineshapes and peak shifts yields information on the strain distribution as a function of film thickness. The measurements of residual stresses for crystalline anatase TiO2 thin film showed that all thin film were under compressive stress. A correlation between Raman shifts and the measured stress from the curvature measurements was established. The behavior of the anatase film on three different substrates shows that the strain in film on glass has a higher value compared to the strain on sapphire and on silicon substrates. The dominant 144 cm− 1Eg mode in anatase TiO2 clearly shifts to a higher value by 0.45-5.7 cm− 1 depending on the type of substrate and film thickness. The measurement of the full width at half maximum values of 0.59-0.80 (2θ°) for the anatase (101) peaks revealed that these values are greater than anatase powder 0.119 (2θ°) and this exhibits strong crystal anisotropy with thermal expansion.  相似文献   

3.
Thin TiO2 films were prepared with the dip-coating technique by using sols deriving from titanium tetraisopropoxide. TiO2 films were formed on glass substrates previously covered by a SiO2 layer obtained from a tetraethylortosilicate sol. The films, after a thermal treatment at 673 K, mainly consisted of TiO2 anatase. The samples were characterised by X-ray diffraction, UV-Vis spectroscopy, scanning electron microscopy and atomic force microscopy. The photoactivity of the various films was tested by using as probe reaction the photo-oxidation of 2-propanol in gas-solid regime. The photoreactivity results indicated that the TiO2 films were efficient for degrading 2-propanol under UV illumination, propanone being the only compound detected as intermediate product. Films prepared by using Degussa P25 appeared to be more photoactive, but the coating was easily detached by wiping.  相似文献   

4.
We have studied the structural and optical properties of thin films of TiO2, doped with 5% ZrO2 and deposited on glass substrate (by the sol-gel method). The dip-coated thin films have been examined at different annealing temperatures (350 to 450 °C) and for various layer thicknesses (63-286 nm). Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.62-2.29 and the porosity is in the range of 0.21-0.70. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZrO2, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 14.8 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range (8.58-20.56 nm).  相似文献   

5.
In this study, preparation of Nb-doped (0-20 mol% Nb) TiO2 dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO2 thin films were measured in the TiO2-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb5+ dopant presented substitutional Ti4+ into TiO2 lattice.  相似文献   

6.
In the present work, we describe the effect of crystallization on humidity sensing properties of nanocrystalline TiO2 thin films prepared by sol-gel techniques. Here, we report an enhancement in the relative humidity (RH) sensitivity just after the crystallization at 375 °C, which is attributed to increased surface activity near crystallization and lower crystallite size. After crystallization, the RH sensitivity was found to decrease with increasing grain size. The complex impedance of the sensor, measured using impedance spectroscopy, fits well with an equivalent circuit consisting of inter-granular resistance and capacitance in parallel. It was found that with the change in RH, only resistance changes significantly, when compared with the capacitance.  相似文献   

7.
Thin films of nanocrystalline SnS2 on glass substrates were prepared from solution by dip coating and then sulfurized in H2S (H2S:Ar = 1:10) atmosphere. The films had an average thickness of 60 nm and were characterized by X-ray diffraction studies, scanning electron microscopy, EDAX, transmission electron microscopy, UV-vis spectroscopy, and Raman spectroscopy. The influence of annealing temperature (150-300 °C) on the crystallinity and particle size was studied. The effect of CTAB as a capping agent has been tested. X-ray diffraction analysis revealed the polycrystalline nature of the films with a preferential orientation along the c-axis. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement and optical band gap was found to vary from 3.5 to 3.0 eV with annealing temperature. Raman studies indicated a prominent broad peak at ∼314 cm−1, which confirmed the presence of nanocrystalline SnS2 phase.  相似文献   

8.
A. Brudnik  M. Radecka  K. Zakrzewska 《Vacuum》2008,82(10):936-941
In this work, we have chosen oxidation of TiN thin films as a feasible method for preparation of nitrogen-doped titanium dioxide thin films, TiO2:N, for photocatalytic applications. DC reactive magnetron sputtering with the plasma emission control was used for deposition of stoichiometric TiN thin films. The microstructure and chemical composition of films before and after oxidation were investigated by means of RBS, X-ray diffraction (XRD) in grazing incidence diffraction (GID) configuration, AFM and XPS techniques. The electrical conductivity was measured by the van der Pauw method as a function of the oxidation temperature. The optical transmittance and reflectance spectra of the films were measured over the visible and UV ranges of the light spectrum. GID diffraction patterns of as-sputtered TiN thin films and those after oxidation indicate that TiO2 rutile is formed at around 300 °C. Nitrogen is still present as indicated by XPS studies even when XRD detects the rutile only. Optical absorption of thin films oxidized at 450 °C is shifted towards the visible range of the light spectrum.  相似文献   

9.
Titanium dioxide (TiO2) thin films have been produced by spin coating a titanium isopropoxide sol on silicon wafer substrates. The structural evolution of the thin films in terms of decomposition, crystallization and densification has been monitored as a function of annealing temperature from 100 to 700 °C using optical characterization and other techniques. The effect of annealing temperature on the refractive index and extinction coefficient of these TiO2 thin films was studied in the range of 0.62 to 4.96 eV photon energy (250-2000 nm wavelength) using spectroscopic ellipsometry. Thermal gravimetric analysis and atomic force microscopy support the ellipsometry data and provide information about structural transformations in the titania thin films with respect to different annealing temperatures. These data help construct a coherent picture of the decomposition of the sol-gel precursors and the creation of dense layers of TiO2. It was observed that the refractive index increased from 2.02 to 2.45 at 2.48 eV (500 nm) in sol-gel spin coated titania films for annealing temperatures from 100 °C to 700 °C.  相似文献   

10.
Nanocrystalline CdxZn1 − xO thin films with different Cd volume ratios in solution (x = 0, 0.25, 0.50, 0.75 and 1) have been deposited on glass substrate by sol-gel dip-coating method. The as-deposited films were subjected to drying and annealing temperatures of 275 °C and 450 °C in air, respectively. The prepared films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy and dc-electrical measurements. The results show that the samples are polycrystalline and the crystallinity of the films enhanced with x. The average grain size is in the range of 20-53 nm. The atomic percent of Cd:Zn was found to be 9.50:1.04, 6.20:3.77 and 4.42:6.61 for x = 0.75, 0.50 and 0.25, respectively. It was observed that the transmittance and the band gap decreased as x increased. All the films exhibit n-type electrical conductivity. The resistivity (ρ) and mobility (μ) are in the range of 3.3 × 102 − 3.4 × 10− 3 Ω cm, and 1.5 − 45 cm2 V− 1 s− 1 respectively. The electron density lies between 1.26 × 1016 and 0.2 × 1020 cm− 3.  相似文献   

11.
Z.S. Khalifa  H. Lin 《Thin solid films》2010,518(19):5457-1796
Titanium dioxide thin films were deposited by Metallorganic Chemical Vapor Deposition at substrate temperatures ranging from 250 °C to 450 °C over soda lime glass and indium tin oxide coated glass substrates. X-ray diffraction studies show that films have a crystalline anatase structure at all the deposition temperatures. Particle size decreases and texture changes with the increase in substrate temperature. X-ray photoelectron spectroscopy confirms the appearance of a new well resolved state in the core level of Ti 2p spectrum shifted by 1.16 eV to lower binding energy due to the reduction of Ti+ 4 to Ti+ 3 upon litheation. Chronoamperometery, cyclic voltammetery and in situ UV-Vis spectrophotometeric studies were carried out on the prepared samples. Particle size and crystallinity control the electrochromic performance. The 350 °C film shows the highest ion storage capacity and the highest optical modulation along with an appreciable band gap broadening.  相似文献   

12.
Pure and cobalt doped titanium dioxide thin films have been prepared on glass and Si (100) substrates by sol-gel spin coating method. The structural and optical properties of the films as a function of cobalt concentration (up to 15 wt.%) have been systematically studied by Rutherford backscattering spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, optical spectroscopy and spectroscopic ellipsometry methods. Rutherford backscattering studies show the presence of cobalt dopant in the films is almost equal to the precursor stoichiometry. Grazing incidence X-ray diffraction and Raman spectroscopy studies confirm the amorphous phase of the as-deposited films and crystalline anatase phase for the films annealed at 600 °C. The optical spectroscopy measurements show that the films are fully transparent in the visible region and there is a band gap narrowing upon increasing cobalt dopant concentration. The refractive index, band gap (Eg) and thickness of the films were determined from spectroscopic ellipsometry measurements. The refractive index of the films was found to increase from 2.2 to 2.7 with the increase in cobalt concentration with a simultaneous decrease of band gap from 3.1 to 2.8, which is favorable for photocatalytic applications. The packing density of the films was calculated by Clausius-Mossotti relation and is found to increase with cobalt concentration.  相似文献   

13.
In the present work thin films of Ti-Me (where Me: V, Nb, Ta) were deposited onto glass substrates by magnetron sputtering of mosaic target in reactive oxygen plasma. The properties of the prepared thin films were studied by X-ray diffraction (XRD), electron dispersive spectroscopy, temperature-dependent electrical and optical transmission spectroscopy measurements. The structural investigations indicate that thin films were XRD-amorphous. Reversible thermoresistance effect, recorded at 52 ± 1 °C was found from electrical measurements. The prepared coatings were well transparent in the visible part of the light spectrum from ca. 350 nm.  相似文献   

14.
Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 °C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.  相似文献   

15.
Electrochromic TiO2 anatase thin films on ITO were prepared by the sol-gel dipping method using a solution of titanium tetraisopropoxide, diethanolamine and ethanol. The films were transparent in the visible range and can be colored in a solution of LiClO4 in propylene carbonate. The transmittances of the colored films were found to be strongly dependent on the Li+ inserted charge. Combining the experimental data obtained from in situ Raman and in situ transmittance spectra with the data from chronoamperometic measurements, it was demonstrated that the fully colorated state of the TiO2 anatase films is Li0.5TiO2 with a crystalline structure of Imma space group symmetry. In the Raman spectra this coloration state exhibits five characteristic bands at 176, 224, 316, 531 and 629 cm−1.  相似文献   

16.
Anatase phase titanium dioxide thin films have been deposited at various substrate temperatures by chemical spray pyrolysis of an aerosol of titanyl acetylacetonate. Deposited TiO2 films were nanocrystalline and preferentially oriented along [101] direction, uniform and adherent to the glass substrate. Best films processed at 450 °C were characterized to analyze its phase composition, texture, roughness, optical and electrical properties. X-ray photoelectron spectroscopy revealed that the surface of the film has only the Ti4+ cations to form perfect TiO2 stoichiometry with less amount of hydration. Atomic force microscopy image demonstrated the existence of homogeneous and rough surface, suitable for electrocatalytic applications. The film has an optical transmittance more than 90% and the refractive index of 2.07 was recorded at the wavelength 633 nm. Due to nano-sized grains, obtained optical band gap (3.65 eV) of the TiO2 thin film was larger than that of the bulk TiO2 (3.2 eV). Calculated porosity of the films 0.44, revealed the porous nature of the films. Hall measurements indicated that these materials are p-type and yield a carrier density of the order 8.8 × 1020 cm−3 and a carrier mobility of 0.48 × 10−6 cm2/Vs. The dc electrical conductivity was therefore very low (8.91 × 10−6 S/cm) because of lower value of mean free path of the charge carriers (4.36 × 10−11 cm). It gives an impression that the process of spray pyrolysis provides an easy way to tailor make thin films possessing superior properties.  相似文献   

17.
The electrical and optical properties of silver indium selenide thin films prepared by co-evaporation have been studied. X-ray diffraction indicates that the as prepared films were polycrystalline in nature. The lattice parameters were calculated to be a=0.6137 and b=1.1816 nm. Composition was determined from energy dispersive analysis of X-ray. Silver indium selenide thin films were also prepared by bulk evaporation of powdered sample for comparative study. They have an optical band gap (Eg) of 1.25 eV and it is a direct allowed transition. Refractive index (n) and extinction coefficient (k) were calculated from absorption and reflection spectra. Steady-state photoconductivity was measured from 300 to 400 K. Carrier lifetime was calculated from transient photoconductivity measurements at room temperature at different intensities of illumination.  相似文献   

18.
MgxZn1−xO (x = 0-0.5) alloy thin films were prepared by a sol-gel dip-coating method. Mg0.1Zn0.9O and Mg0.5Zn0.5O films prepared were annealed in the range of 400-900 °C to investigate their thermal stability and temperature-dependent optical properties. The Mg0.1Zn0.9O films were thermally stable in the investigated annealing temperature range and exhibited the maximum ultraviolet emission at 800 °C. The segregation of MgO occurred in the Mg0.5Zn0.5O films, and the near-band-edge ultraviolet emission of this alloy was enhanced with increasing annealing temperature. The Mg saturation content in the sol-gel prepared MgZnO alloys was found to be about 0.23 where the band gap extended to 3.48 eV.  相似文献   

19.
This study presents the fabrication method and the dielectric property of polymer matrix composite films of carbon nanotube (CNT) coated with TiO2. The TiO2 was coated with sol-gel method using titanium (IV) butoxide (TNBT), HO2 and benzyl-alcohol as the surfactant. The configuration of CNT-TiO2 hybrid was observed with the field emission scanning electron microscope images. The coated TiO2 was thermally treated and transformed into the anatase structure to enhance the mechanical strength and get the high insulating property. The anatase structure was proved from the diffraction angles of XRD. The CNT-TiO2 hybrid was mixed with the epoxy resin using 3-roll-mil and casted into the films using film casting method. The structure of CNT-TiO2 hybrid was ascertained to be maintained against the high shear stress during the mixing and casting processes. The dielectric property of the composite films was measured following IPC-TM-6550. The dielectric property at 1 GHz of the composite film of 5 wt.% CNT is about 10 and the loss tangent at 1 GHz is about 0.06.  相似文献   

20.
Epitaxial anatase titanium dioxide (TiO2) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10− 7 Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO2 growth. X-ray diffraction revealed that the TiO2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号