首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pancreatic islets were cultured for 24 h in the presence of 1 mM glucose, which renders islets incapable of responding to glucose with insulin release. These islets were compared to islets maintained at 20 mM glucose for 24 h. Detritiation of [2-3H]glucose and [5-3H]glucose in 1 mM glucose islets was normal, suggesting that glucose transport and phosphorylation and all enzymes of glycolysis were not down-regulated in the incapacitated islets. 14CO2 formation from [U-14C]glucose and [6-14C]glucose was inhibited up to 80% and 14CO2 from methyl succinate was inhibited up to 60%, indicating that down-regulation at (a) mitochondrial site(s) might explain the incapacitated insulin release. 14CO2 formation from [3,4-14C]glucose (which becomes [1-14C]pyruvate) was decreased, indicating that the reaction catalyzed by pyruvate dehydrogenase was down-regulated. This decrease, however, was not as large as the decreases in 14CO2 formation from [U-14C]glucose, [2-14C]glucose (which becomes [2-14C]pyruvate), or [6-14C]glucose (which becomes [3-14C]pyruvate), indicating that other reactions were also down-regulated. 14CO2 formation from [1-14C]glucose was inhibited less than that from [6-14C]glucose in the incapacitated islets (34 vs 54%) and these rates indicated that flux of glucose through the pentose phosphate pathway was increased in the incapacitated islet, such that 29% (0.4 nmol of 1.4 glucose/100 islets/90 min) was metabolized via this pathway in the incapacitated islet but only 3.4% (0.1 of 2.9 nmol glucose/100 islets/90 min) was metabolized via the pentose pathway in the 20 mM glucose islets. With rates of 14CO2 evolved from glucose labeled at C2 and C6 and from methyl succinate labeled at C1 + C4 and C2 + C3 the 14CO2 ratio formula was used to calculate the ratios of carboxylated and decarboxylated pyruvate. Roughly equal amounts of pyruvate entered the citric acid cycle by each route in islets maintained for 24 h at 1, 5, or 20 mM glucose. The results indicate that decarboxylation and carboxylation of pyruvate were about equally suppressed in incapacitated islets and that direct inhibition of reactions of the cycle was unlikely. This is consistent with evidence which indicates that down-regulation of both pyruvate carboxylase and pyruvate dehydrogenase occurs in incapacitated islets, i.e., under long-term conditions that modify amounts of enzymes (MacDonald et al., 1991, J. Biol. Chem. 266, 22392-22397).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
In cerebral cortical neurons, synthesis of the tricarboxylic acid (TCA) cycle-derived amino acids, glutamate and aspartate as well as the neurotransmitter of these neurons, gamma-aminobutyrate (GABA), was studied incubating the cells in media containing 0.5 mM [U-13C]glucose in the absence or presence of glutamine (0.5 mM). Lyophilized cell extracts were analyzed by 13C nuclear magnetic resonance (NMR) spectroscopy and HPLC. The present findings were compared to results previously obtained using 1.0 mM [U-13C]lactate as the labeled substrate for the neurons. Regardless of the amino acids studied, incubation periods of 1 and 4 h resulted in identical amounts of 13C incorporated. Furthermore, the metabolism of lactate was studied under analogous conditions in cultured cerebral cortical astrocytes. The incorporation of 13C from lactate into glutamate was much lower in the astrocytes than in the neurons. In cerebral cortical neurons the total amount of 13C in GABA, glutamate and aspartate was independent of the labeled substrate. The enrichment in glutamate and aspartate was, however, higher in neurons incubated with lactate. Thus, lactate appears to be equivalent to glucose with regard to its access to the TCA cycle and subsequent labeling of glutamate, aspartate and GABA. It should be noted, however, that incubation with lactate in place of glucose led to lower cellular contents of glutamate and aspartate. The presence of glutamine affected the metabolism of glucose and lactate differently, suggesting that the metabolism of these substrates may be compartmentalized.  相似文献   

3.
The metabolic fate of glutamate in astrocytes has been controversial since several studies reported > 80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C] glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 mM [U-13C] glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3] glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2-0.5 mM glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C] lactate was essentially unchanged within the range of 0.2-0.5 mM glutamate, whereas the amount of [13C] aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 mM, suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 mM and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

4.
Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 +/- 18 and 2.1 +/- 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 +/- 8 and 387 +/- 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

5.
Pyruvate recycling is a well established pathway in the liver, but in the brain, the cellular localization of pyruvate recycling remains controversial and its physiological significance is unknown. In cultured cortical astrocytes, pyruvate formed from [U-13C]glutamate was shown to re-enter the TCA cycle after conversion to acetyl-CoA, as demonstrated by the labelling patterns in aspartate C-2 and C-3, lactate C-2, and glutamate C-4, which provides evidence for pyruvate recycling in astrocytes. This finding is in agreement with previous studies of astrocytic cultures, in which pyruvate recycling has been described from [U-13C]glutamine, in the presence of glutamate, and from [U-13C]aspartate. Pyruvate recycling in brain was studied in fasted rats receiving either an intraperitoneal or a subcutaneous injection of [1,2-13C]acetate followed by decapitation 30 min later. Extracts of cortical tissue were analysed with 13C-NMR spectroscopy and total amounts of amino acids quantified by HPLC. Plasma extracts were analysed with 1H- and 13C-NMR spectroscopy, and showed a significantly larger amount of [1, 2-13C]acetate in the intraperitoneal group compared to the subcutaneous group. Furthermore, a small amount of label was detected in glucose in both groups. In the subcutaneously injected rats, [4-13C]glutamate and [2-13C]GABA were less enriched than plasma glucose, which might have been the precursor. In the intraperitoneally injected rats, however, pyruvate formation from [1, 2-13C]acetate, and re-entry of this pyruvate into the TCA cycle was demonstrated by the presence of greater 13C enrichment in [4-13C]glutamate and [4-13C]glutamine compared to the subcutaneous group, probably resulting from the significantly higher [1, 2-13C]acetate concentration in brain and plasma.  相似文献   

6.
Induction of nitric oxide synthase and generation of nitric oxide in pancreatic islet beta-cells may mediate cytokine-induced dysfunction leading to insulin-dependent diabetes mellitus. Nitric oxide generation can be regulated by availability of arginine substrate which, in turn, may be affected by substrate utilization in competing pathways such as the arginase-catalysed formation of ornithine and urea. In this study we have investigated the activity of arginase in the rat insulinoma-derived cell line RINm5F and the effect on this of interleukin 1beta, the nitric oxide synthase reaction intermediate NG-hydroxy-l-arginine and the nitric oxide-generating compounds 3-morpholinosydnonimine and S-nitrosoglutathione. Cytosols from RINm5F cells treated with or without interleukin 1beta (0.1nM, 18h) were incubated (45min, 37 degrees C) with [U-14C]arginine. Radiolabelled products ([14C]citrulline from nitric oxide synthase, [14C]ornithine and [14C]urea from arginase) were separated by high-performance liquid chromatography or ion-exchange chromatography. Interleukin 1beta increased citrulline production (from 0.01+/-0.002 to 0.58+/-0.03 pmol/microg cell protein), indicating induction of nitric oxide synthase, and significantly decreased production of both ornithine (from 4.60+/-0.20 to 3.40+/-0.20 pmol/microg) and urea (0.93+/-0.05 to 0.69+/-0.04 pmol/microg) (P<0.001), indicating decreased activity of arginase. Arginase was significantly inhibited by NG-hydroxy-l-arginine (IC50=50 microM), S-nitrosoglutathione (500 microM: 69+/-7% of control) and 3-morpholinosydnonimine (1 mM: 57+/-7% of control) (P<0.05). We conclude that during cytokine-directed beta-cell assault nitric oxide synthase-catalysed production of NG-hydroxy-l-arginine and nitric oxide may inhibit arginase thereby increasing the availability of arginine for nitric oxide production.  相似文献   

7.
Studies from several groups have provided evidence that glutamate and glutamine are metabolized in different compartments in astrocytes. In the present study we measured the rates of 14CO2 production from U-[14C]glutamate and U-[14C]glutamine, and utilized both substrate competition experiments and the transaminase inhibitor aminooxyacetic acid (AOAA) to obtain more information about the compartmentation of these substrates in cultured rat brain astrocytes. The rates of oxidation of 1 mM glutamine and glutamate were 26.4 +/- 1.4 and 63.0 +/- 7.4 nmol/h/mg protein, respectively. The addition of 1 mM glutamate decreased the rate of oxidation of glutamine to 26.3% of the control rate, demonstrating that glutamate can effectively compete with the oxidation of glutamine by astrocytes. In contrast, the addition of 1 mM glutamine had little or no effect on the rate of oxidation of glutamate by astrocytes, demonstrating that the glutamate produced intracellularly from exogenous glutamine does not dilute the glutamate taken up from the media. The addition of 5 mM AOAA decreased the rate of 14CO2 production from glutamine to 29.2% of the control rate, consistent with earlier studies by our group. The addition of 5 mM AOAA decreased the rate of oxidation of concentrations of glutamate < or = 0.1 mM by approximately 50%, but decreased the oxidation of 0.5-1 mM glutamate by only approximately 20%, demonstrating that a substantial portion of glutamate enters the tricarboxylic acid (TCA) cycle via glutamate dehydrogenase (GDH) rather than transamination, and that as the concentration of glutamate increases the relative proportion entering the TCA cycle via GDH also increases. To determine if the presence of an amino group acceptor (i.e. a ketoacid) would increase the rate of metabolism of glutamate, pyruvate was added in some experiments. Addition of 1 mM pyruvate increased the rate of oxidation of glutamate, and the increase was inhibited by AOAA, consistent with enhanced entry of glutamate into the TCA cycle via transamination in the presence of pyruvate. Enzymatic studies showed that pyruvate increased the activity of mitochondrial aspartate aminotransferase (AAT). Overall, the data demonstrate that glutamate formed intracellularly from glutamine enters the TCA cycle primarily via transamination, but does not enter the same TCA cycle compartment as glutamate taken up from the extracellular milieu. In contrast, extracellular glutamate enters the TCA cycle in astrocytes via both transamination and GDH, and can compete with, or dilute, the oxidation of glutamate produced intracellularly from glutamine.  相似文献   

8.
Insulin resistance of diaphragms of ob/ob mice has been repeatedly demonstrated previously both in vitro and in vivo. In the present study, transport and metabolism of glucose with and without insulin stimulation were compared in a skeletal muscle more likely than diaphragm or heart to be representative of the overall striated muscle mass, i.e. isolated soleus muscle. Compared with soleus muscle from lean controls, unstimulated lactate release in the presence of exogenous glucose was depressed from 16.2 to 12.3 nmol/60 min per mg wet wt in soleus from ob/ob mutants; glycolysis was decreased from 6.6 to 3.7 and [14C]glucose oxidation to 14CO2 from 0.90 to 0.33 nmol glucose/60 min per mg wet wt. Uptake of 2-deoxyglucose (2-DOG), both with and without insulin, was very much less for soleus from ob/ob than from lean mice, at 2-DOG concentrations ranging from 0.1 to 10 mM, and in mice of 6-15 wk. When 2-DOG concentration was 1 mM, its basal uptake was 0.53 nmol/30 min per mg wet wt for soleus of ob/ob as against 0.96 for soleus of lean mice. The absolute increment due to 1 mU/ml insulin was 0.49 in muscle of ob/ob as against 1.21 in that of lean mice. When the resistance to insulin action was decreased by pretreatment in vivo by either streptozotocin injection or fasting, the decreased basal 2-DOG uptake of subsequently isolated soleus muscle was not improved. Inhibition of endogenous oxidation of fatty acids by 2-bromostearate, while greatly increasing 14CO2 production from [14C]glucose, did not affect basal [5-3H]glucose metabolism or 2-DOG uptake. It is suggested that transport and/or phosphorylation of glucose under basal, unstimulated conditions are depressed in soleus muscle of ob/ob mice, whether or not resistance to insulin and hyperinsulinemia are also present. Although the origin of the decreased basal glucose uptake remains unknown it might be related to a similar decrease in basal glucose uptake by ventromedial hypothalamic cells, an event presumably resulting in a tendency to hyperphagia. Decreased basal glucose uptake by soleus muscle of ob/ob mice might explain the hyperglycemia, and hence partly the hyperinsulinemia and excessive fat deposition of those animals.  相似文献   

9.
The turnover rates of plasma lactate, normalized for O2 consumption rate, are higher in the fetus than in the adult. This occurs despite very low rates of fetal gluconeogenesis which preclude the recycling of lactate carbon into glucose. In an effort to establish the main routes of disposal of fetal plasma lactate, 12 midgestation ovine fetuses (age 74 +/- 1 days) were infused intravenously at constant rate with L-[U-14C]lactate for a 4-hour period. At the end of the infusion, the amounts of 14C retained by the fetus and by the placenta, and the distribution of the retained 14C in free and protein-bound amino acids and in lipids were measured. Of the total 14C infused, 17.0 +/- 1.4% was recovered in the placenta, 4.0 +/- 0.3% in the fetal liver, and 15.0 +/- 0.8% in the extrahepatic fetal tissues. Of the retained radioactive carbon, 45-57% was recovered in the free and protein-bound amino acid fractions and 11-17% in the lipid fractions. Approximately 90% of the 14C in the free amino acid fractions was present as glutamate/glutamine, serine, glycine, and alanine carbon. In conjunction with data on fetal CO2 production from lactate carbon, these results demonstrate that the main routes of fetal lactate disposal are oxidation and synthesis of nonessential amino acids and lipids.  相似文献   

10.
Depressed glucose utilization and over-reliance of muscle tissues on fat represents a major metabolic disturbance in diabetes. This study was designed to investigate the relationship between fatty acid oxidation and glucose utilization in diabetic hearts and to examine the role of L-Carnitine on the utilization of these substrates in diabetes. 14CO2 release from [1-14C]pyruvate (an index of PDH activity), [2-14C]pyruvate and [6-14C]glucose (an index of acetyl-CoA flux through the Krebs cycle), [U-14C]glucose (an index of both PDH and acetyl-CoA flux through the Krebs cycle), and [1-14C]palmitate oxidation were studied in cardiac myocystes isolated from normal and streptozotocin-injected rats. Palmitate oxidation was increased twofold in diabetic myocytes compared to normal cells (5.4 +/- 1.45 vs 2.35 +/- 0.055 nmol/mg protein/30 min, p > 0.05). L-Carnitine (5 mM) significantly increased palmitate oxidation (60-70%) in normal cells but had no effect on diabetic cells. The activity of PDH and acetyl-CoA flux through the Krebs cycle was severely depressed in diabetes (58.14 +/- 20.27 and 8.63 +/- 0.62 in diabetes vs 128.75 +/- 11.47 and 24.84 +/- 7.81 nmol/mg protein/30 min in controls, p > 0.05, respectively). The efflux of acetylcarnitine, a by-product of PDH activity was also much lower in diabetic cells than in normal cells but had no effect in diabetes. L-Carnitine also had no effect on 14CO2 release from [U-14C]glucose but significantly decreased that from [6-14C]glucose, which reflects oxidative metabolism suggesting that L-Carnitine decreases oxidative glucose utilization. Thus, these data suggest that the overreliance on fat in diabetes may be in part secondary to a reduction of carbohydrate-generated acetyl-CoA through the Krebs cycle.  相似文献   

11.
Changes in the protein content, maximal activity, and Km of phosphate-dependent glutaminase were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes) from just-weaned, mature (3 months), and aged rats (15 months). Also, [U-14C] glutamine transport and decarboxylation and the production of glutamate and aspartate from 2 and 20 mM glutamine were measured in incubated mesenteric lymph node lymphocytes. The ageing process induced a reduction in the protein content of the thymus and spleen, as well as the phosphate-dependent glutaminase activity in the thymus and isolated lymphocytes. The Km of phosphate-dependent glutaminase, however, was not affected by the process. Ageing reduced [U-14C] glutamine decarboxylation and increased glutamate and aspartate production in incubated lymphocytes. The results indicate that the ageing process does modify several aspects of glutamine metabolism in lymphocytes: reduces maximal glutaminase activity and [U-14C] glutamine decarboxylation and increases the Km for [U-14C] glutamine uptake and the production of glutamate and aspartate.  相似文献   

12.
Elevated tissue lactate concentrations typically found in tumors can be measured by in vivo nuclear magnetic resonance (NMR) spectroscopy. In this study, lactate turnover in rat C6 glioma was determined from in vivo 1H NMR measurements of [3-13C]lactate buildup during steady-state hyperglycemia with [1-13C]glucose. With this tumor model, a narrow range of values was observed for the first-order rate constant that describes lactate efflux, k2 = 0.043 +/- 0.007 (n = 12) SD min-1. For individual animals, the standard error in k2 was small (< 18%), which indicated that the NMR data fit the kinetic model well. Lactate measurements before and after infusing [1-13C]glucose showed that the majority of the tumor lactate pool was metabolically active. Signals from 13C-labeled glutamate in tumors were at least 10-fold smaller than the [3-13C]lactate signal, whereas spectra of the contralateral hemispheres revealed the expected labeling of [4-13C]glutamate, as well as [2-13C] and [3-13C]glutamate, which indicates that label cycled through the tricarboxylic acid cycle in the brain tissue. Lack of significant 13C labeling of glutamate was consistent with low respiratory metabolism in this glioma. It is concluded that lactate in rat C6 glioma is actively turning over and that the kinetics of lactate efflux can be quantified noninvasively by 1H NMR detection of 13C label. This noninvasive NMR approach may offer a valuable tool to help evaluate tumor growth and metabolic responsiveness to therapies.  相似文献   

13.
L-[3-3H,U-14C]Lactate was administered to starved rats either as a bolus or by continuous infusion. Tracer administration was performed two ways: injection into the vena cava and sampling from the aorta (V-A mode), or injection into the aorta and sampling from the vena cava (A-VC mode). The specific-radioactivity curves after infusion or injection differed markedly with the two procedures. However, the specific radioactivities of 14C-labelled glucose derived from [U-14C]lactate were similar in the two modes. The apparent turnover rates of lactate calculated from the 3H specific-radioactivity curves in the V-A mode were about half those obtained from the 3H specific-radioactivity curves in the A-VC mode. The apparent contribution of lactate carbon to glucose carbon calculated from specific-radioactivity curves of the A-VC mode was greater than that obtained from the V-A mode. The apparent recycling of lactate carbon calculated from the specific radioactivities for [U-14C]- and [3-3H]-lactate was greater in the A-VC mode than the V-A mode. [U-14C] Glucose was administered in the two modes, but in contrast with lactate the specific radioactivities were only slightly different. An analysis to account for these observations is presented. It is shown that the two modes represent sampling from different pools of lactate. The significance of sites of tracer administration and sampling for the interpretation of tracer kinetics of compounds present in intracellular and extracellular spaces, and with a high turnover rate, is discussed. We propose that for such compounds, including lactate, alanine and glycerol, the widely used V-A mode leads to a marked underestimate of replacement, mass and carbon recycling, and that the A-VC mode is the preferred method for the assessment of these parameters.  相似文献   

14.
To assess the effects of lactate on glucose metabolism, sodium lactate (20 mumol.kg-1.min-1) was infused into healthy subjects in basal conditions and during application of a hyperinsulinaemic (6 pmol.kg-1.min-1) euglycaemic clamp. Glucose rate of appearance (GRa) and disappearance (GRd) were measured from plasma dilution of infused U- 13C glucose, and glucose oxidation (G(ox)) from breath 13CO2 and plasma 13C glucose. In basal conditions, lactate infusion did not alter G(ox) (8.8 +/- 0.9 vs 9.2 +/- 1.1 mumol.kg-1.min-1), while GRa slightly decreased from 15.2 +/- 0.8 basal to 13.9 +/- 0.9 mumol.kg-1.min-1 after lactate (p < 0.05). During a hyperinsulinaemic clamp, hepatic glucose production was completely suppressed with or without lactate. Lactate decreased G(ox) from 17.1 +/- 0.4 to 13.4 +/- 1.2 mumol.kg-1.min-1 (p < 0.05), whereas GRd was unchanged (39.7 +/- 3.6 vs 45.6 +/- 2.6 mumol.kg-1.min-1. It is concluded that infusion of lactate in basal conditions does not increase GRa or interfere with peripheral glucose oxidation, and that during hyperinsulinaemia lactate decreases glucose oxidation but does not alter hepatic or peripheral insulin sensitivity.  相似文献   

15.
1. The incorporation of L-[U-14C]leucine, L[U-14C]histidine and L-[U-14C]phenylalanine into casein secreted during perfusion of isolated guinea-pig mammary glands was demonstrated. 2. The extent of incorporation of label into casein residues was consistent with their being derived from free amino acids of the perfusate plasma. 3. The mean transit time of the amino acids from perfusate into secreted casein was approx. 100 min. 4. Whereas radioactive histidine and phenylalanine were incorporated solely into milk protein, radioactivity from [U-14C]valine was also transferred to CO2 and to an unidentified plasma component, and from [U-14C]leucine to plasma glutamic acid. 5. Evidence from experiments with [U-14C]phenylalanine suggests that, as in rats, but in contrast with ruminant species, guinea-pig mammary tissue does not possess phenyl alanine hydroxylase activity. 6. The results are discussed in relation to the possible role of essential amino acid catabolism in the control of milk-protein synthesis.  相似文献   

16.
13C and 1H NMR spectroscopy was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The changing of lactate and glucose concentration in the extracellular medium of C6 glioma cells incubated with 5.5 mM glucose and 11 mM lactate indicated a net production of lactate as the consequence of an active aerobic glycolysis. The 13C enrichments of various metabolites were determined after 4-h cell incubation in media containing both substrates, each of them being alternatively labeled in the form of either [3-13C]L-lactate or [1-13C]D-glucose. Using 11 mM [3-13C]L-lactate, the enrichment of glutamate C4, 69%, was found higher than that of alanine C3, 32%, when that of acetyl-CoA C2 was 78%. These results indicated that exogenous lactate was the major substrate for the oxidative metabolism of the cells. Nevertheless, an active glycolysis occurred, leading to a net lactate production. This lactate was, however, metabolically different from the exogenous lactate as both lactate species did not mix into a unique compartment. The results were actually consistent with the concept of the existence of two pools of both lactate and pyruvate, wherein one pool was closely connected with exogenous lactate and was the main fuel for the oxidative metabolism, and the other pool was closely related to aerobic glycolysis.  相似文献   

17.
We prepared [U-14C]cellobiose by cultivating Acetobacter pasteurianus in the presence of [U-14C]glucose and hydrolyzing the [U-14C]cellulose formed with beta-glucosidase-free cellulase from Trichoderma reesei. This 14C-labeled cellobiose was used to investigate the presence of an uptake system for cellobiose in T. reesei. Evidence was obtained for the presence of a high affinity (Km for cellobiose 0.3 microM) but low activity (2.5 milliunits/mg fungal dry weight) cellobiose permease. The permease is formed constitutively, but higher levels are formed after addition of sophorose (glucosyl-beta-1,2-diglucoside), a reputed cellulase inducer. The permease appears to be specific for beta-diglucosides, as the uptake of [U-14C]cellobiose is inhibited by sophorose, gentiobiose (glucosyl-beta-1,3-glucoside), and cellobiose. Under these conditions, cellooligodextrines (n, 4-7; final concentration, 1 mM) are not inhibitors. Glucose, but no other monosaccharides, inhibits the permease. The hypersecretory mutant T. reesei RUT C-30 exhibits elevated permease activities, whereas in T. reesei QM 9979, a mutant strain defective in the induction of cellulases by cellulose or sophorose, strongly reduced permease activities were demonstrated. The results stress a hitherto not recognized point of control in the induction of cellulases by T. reesei at the level of uptake of cellulose oligosaccharides.  相似文献   

18.
Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate synthesis were determined from the 13C labeling pattern of effluent citrate by gas chromatography-mass spectrometry (see companion article, Comte, B., Vincent, G., Bouchard, B., and Des Rosiers, C. (1997) J. Biol. Chem. 272, 26117-26124). Precision on flux measurements of anaplerotic pyruvate carboxylation depended on the mix of substrates supplied to the heart. Anaplerotic fluxes were precisely determined under conditions where acetyl-CoA was predominantly supplied by beta-oxidation, as it occurred with 0.2 or 1 mM octanoate. Then, anaplerotic pyruvate carboxylation provided 3-8% of the OAA moiety of citrate and was modulated by concentrations of lactate and pyruvate in the physiological range. Also, the contribution of pyruvate to citrate formation through carboxylation was equal to or greater than through decarboxylation. Furthermore, 13C labeling data on tissue citric acid cycle intermediates and pyruvate suggest that (i) anaplerosis occurs also at succinate and (ii) cataplerotic malate decarboxylation is low. Rather, the presence of citrate in the effluent perfusate of hearts perfused with physiological concentrations of glucose, lactate, and pyruvate and concentrations of octanoate leading to maximal oxidative rates suggests a cataplerotic citrate efflux from mitochondria to cytosol. Taken altogether, our data raise the possibility of a link between pyruvate carboxylation and mitochondrial citrate efflux. In view of the proposed feedback regulation of glycolysis by cytosolic citrate, such a link would support a role of anaplerosis and cataplerosis in metabolic signal transmission between mitochondria and cytosol in the normoxic heart.  相似文献   

19.
Since lactate released by glial cells may be a key substrate for energy in neurons, the kinetics for the uptake of L-[U-14C]lactate by cortical synaptic terminals from 7- to 8-week-old rat brain were determined. Lactate uptake was temperature-dependent, and increased by 64.9% at pH 6.2, and decreased by 43.4% at pH 8.2 relative to uptake at pH 7.3. Uptake of monocarboxylic acids was saturable with increasing substrate concentration. Eadie-Hofstee plots of the data gave evidence of two carrier-mediated uptake mechanisms with a high-affinity Km of 0.66 mM and Vmax of 3.66 mM for pyruvate, and a low-affinity system with a Km of 9.9 mM for both lactate and pyruvate and Vmax values of 16.6 and 23.1 nmol/30 s/mg protein for lactate and pyruvate, respectively. Saturable uptake was seen in the presence of 10 mM alpha-cyano-4-hydroxycinnamate. Lactate transport by synaptic terminals was much more sensitive to inhibition by sulfhydryl reagents than transport in astrocytes. Addition of 0.5 and 2 mM mersalyl decreased the uptake of 1 mM lactate by synaptic terminals by 59.3 and 66.37%, respectively. Pyruvate moderately decreased lactate transport, whereas 3-hydroxybutyrate had little effect. Quercetin, an inhibitor of lactate release, had little effect on the content of 14C lactate in synaptic terminals, supporting the concept that the majority of lactate produced within brain is from glial cells. Oxidation of L-[U-14C]lactate by synaptosomes was saturable, and yielded a Km of 1.23 mM and a Vmax of 116 nmol/h/mg protein. Overall the studies show that synaptic terminals from adult brain have a high capacity for transport and oxidation of lactate, consistent with the proposed role for this compound in metabolic trafficking in brain. Furthermore, the data provide kinetic evidence of two carrier-mediated mechanisms for monocarboxylic acid transport by synaptosomes and demonstrate that uptake of lactate by synaptic terminals is regulated differently than transport by astrocytes. Uptake of lactate by synaptic terminals also has differences from the systems described for neurons.  相似文献   

20.
The conversion of 14C-maltose into glucose, lactate and 14 CO2 was studied in perfused livers from fed and fasted rats and in isolated hepatocytes. Maximal glucose production was 30 mM x g-1 x h-1; half-maximal rates were found with 3 mM maltose. About 0.01 % of the radioactivity infused was recovered as 14CO2. The addition of maltose had no effect on rates of oxygen consumption, lactate production or ketogenesis. The data suggest that maltose did not serve as a major substrate for biosynthetic or energy producing processes under the conditions of the perfused rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号