首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many boundary value problems involving triple integral equations or triple series relations, it is required to solve a single singular integral equation with constant but unknown limits of integration. In this paper we present a variational method to determine approximately the bounded unknown function, if it exists, together with the unknown limits of integration for a type of such singular integral equations. The method is used to recover the exact solution of an integral equation and is applied to a contact problem in the theory of elasticity which is intractable otherwise.  相似文献   

2.
A new technique for the solution of singular integral equations is proposed, where the unknown function may have a particular singular behaviour, different from the one defined by the dominant part of the singular integral equation. In this case the integral equation may be discretized by two different quadratures defined in such a way that the collocation points of the one correspond to the integration points of the other. In this manner the system is reduced to a n × n system of discrete equations and the method preserves, for the same number of equations, the same polynomial accuracy. The main advantage of the method is that it can proceed without using special collocation points. This new technique was tested in a series of typical examples and yielded results which are in good agreement with already existing solutions.  相似文献   

3.
A correspondence is made between the reciprocal relation for linear elliptic partial differential equations and the Riesz integral representation. The former relates the boundary distributions and appropriate normal fluxes of two arbitrary solutions, and the latter expresses a continuous linear functional in terms of an integral involving a representing function. When sufficient regularity conditions are met, the representing function is identified with the unknown boundary distribution. In principle, the representing function may be expressed in terms of the images of a complete set of orthonormal basis functions with known normal fluxes, as suggested by Kupradze [Kupradze VD. On the approximate solution of problems in mathematical physics. Russ Math Surv 1967; 22: 59–107]; in practice, the representing function is computed by solving integral equations using boundary element methods. The basic procedure involves expressing the representing function in terms of finite-element or other basis functions, and requiring the satisfaction of the reciprocal relationship with a suitable set of test functions such as Green's functions and their dipoles. When the singular points are placed at the boundary, we obtain the standard boundary integral equation method. When the singular points are placed outside the domain of solution, we obtain a system of functional equations and associated class of desingularized boundary integral methods. When sufficient regularity conditions are met and the test functions comprise a complete set, then in the limit of infinite discretization the numerical solution converges to the unknown boundary distribution. An overview of formulations is presented with reference to Laplace's equation in two dimensions. Numerical experimentation shows that, in general, the solution obtained by desingularized methods becomes increasingly less accurate as the singular points of Green's functions move farther away from the boundary, but the loss of accuracy is significant only when the exact solution shows pronounced variations. Exceptions occur when the integral equation does not have a unique solution. In contrast, and in agreement with previous findings, the condition number of the linear system increases rapidly with the distance of the singular points from the boundary, to the extent that a dependable solution cannot be obtained when the singularities are located even a moderate distance away from the boundary. The desingularized formulation based on Green's function dipoles is superior in accuracy and reliability to the one that uses Green functions. The implementation of the method to the equations of elastostatics and Stokes flow are also discussed.  相似文献   

4.
In this paper the notch problem of antiplane elasticity is discussed and a new boundary integral equation is formulated. In the problem, the distributed dislocation density is taken to be the unknown function. Unlike the usual choice, the resultant force function is taken as the right hand term of the integral equation; therefore, a new boundary integral equation for the notch problem of antiplane elasticity with a weaker singular kernel (logarithmic) is obtained. After introducing a particular fundamental solution of antiplane elasticity, the notch problem for the half-plane is discussed and the relevant boundary integral equation is formulated. The integral equations derived are compact in form and convenient for computation. Numerical examples demonstrated that high accuracy can be achieved by using the new boundary equation.  相似文献   

5.
A convenient and efficient numerical method is presented for the treatment of Cauchy type singular integral equations of the second kind. The solution is achieved by splitting the Cauchy singular term into two parts, allowing one of the parts to be determined in a closed-form while the other part is evaluated by standard Gauss-Jacobi mechanical quadrature. Since the Cauchy singularity is removed after this manipulation, the quadrature abscissas and weights may be readily available and the placement of the collocation points is flexible in the present method. The method is exact when the unknown function can be expressed as the product of a fundamental function and a polynomial of degree less than the number of the integration points. The proposed algorithm can also be extended to the case where the singularities are complex and is found equally effective. The proposed algorithm is easy to implement and provides a shortcut for programming the numerical solution to the singular integral equation of the second kind.  相似文献   

6.
Summary As is well-known, an efficient numerical technique for the solution of Cauchy-type singular integral equations along an open interval consists in approximating the integrals by using appropriate numerical integration rules and appropriately selected collocation points. Without any alterations in this technique, it is proposed that the estimation of the unknown function of the integral equation is further achieved by using the Hermite interpolation formula instead of the Lagrange interpolation formula. Alternatively, the unknown function can be estimated from the error term of the numerical integration rule used for Cauchy-type integrals. Both these techniques permit a significant increase in the accuracy of the numerical results obtained with an insignificant increase in the additional computations required and no change in the system of linear equations solved. Finally, the Gauss-Chebyshev method is considered in its original and modified form and applied to two crack problems in plane isotropic elasticity. The numerical results obtained illustrate the powerfulness of the method.  相似文献   

7.
This paper is concerned with a method of decreasing stress concentration due to a notch and a hole by providing additional holes in the region of the principal notch or hole. A singular integral equation method that is useful for this optimization problem is discussed. To formulate the problem the idea of the body force method is applied using the Green's function for a point force as a fundamental solution. Then, the interaction problem between the principal notch and the additional holes is expressed as a system of singular integral equations with a Cauchy-type singular kernel, where densities of the body force distribution in the x- and y-directions are to be unknown functions. In solving the integral equations, eight kinds of fundamental density functions are applied; then, the continuously varying unknown functions of body force densities are approximated by a linear combination of products of the fundamental density functions and polynomials. In the searching process of the optimum conditions, the direction search of Hooke and Jeeves is employed. The calculation shows that the present method gives the stress distribution along the boundary of a hole very accurately with a short CPU time. The optimum position and the optimum size of the auxiliary hole are also determined efficiently with high accuracy.  相似文献   

8.
Summary The Gauss-type quadrature methods with a logarithmic weight function can be extended to the evaluation of Cauchy-type integrals and to the solution of Cauchy-type integral equations by reduction of the latter to a linear system of algebraic equations. This system is obtained by applying the integral equation at properly selected collocation points. The poles of the integrand lying in the integration interval were treated as lying outside this interval. The efficiency of the method, both in evaluating integrals and solving integral equations, is exhibited by a numerical example. Finally, an application of the method to a crack problem of plane elasticity is made.  相似文献   

9.
A new singular integral equation (with a kernel with a logarithmic singularity) is proposed for the crack problem inside an elastic medium under plane or antiplane conditions. In this equation the integral is considered in the sense of a finite-part integral of Hadamard because the unknown function presents singularities of order ?3/2 at the crack tips. The Galerkin and the collocation methods are proposed for the numerical solution of this equation and the determination of the values of the stress intensity factors at the crack tips and numerical results are presented. Finally, the advantages of this equation are also considered.  相似文献   

10.
A meshless method for the solution of Helmholtz equation has been developed by using the radial basis integral equation method (RBIEM). The derivation of the integral equation used in the RBIEM is based on the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source points always in the centre of circular sub-domains in order to avoid singular or near-singular integrals. Three equations for two-dimensional (2D) or four for three-dimensional (3D) potential problems are required at each node. The first equation is the integral equation arising from the application of the Green’s identities and the remaining equations are the derivatives of the first equation with respect to space coordinates. Radial basis function (RBF) interpolation is applied in order to obtain the values of the field variable and partial derivatives at the boundary of the circular sub-domains, providing this way the boundary conditions for solution of the integral equations at the nodes (centres of circles). The accuracy and robustness of the method has been tested on some analytical solutions of the problem. Two different RBFs have been used, namely augmented thin plate spline (ATPS) in 2D and f(R)=4Rln(R) augmented by a second order polynomial. The latter has been found to produce more accurate results.  相似文献   

11.
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.  相似文献   

12.
This paper is concerned with numerical solutions of singular integral equations with Cauchy-type singular kernel. It is well-known that this type of singular integral equations appears in the analysis of crack problems using the continuously distributed dislocation method. In addition, it also appears in the analysis of notch problems using the body force method. In the present analysis, the unknown function of densities of dislocations and body forces are approximated by the product of the fundamental density functions and polynomials. The accuracy of stress intensity factors and stress concentration factors obtained by the present method is verified through the comparison with the exact solution and the reliable numerical solution obtained by other researchers. The present method is found to give good convergency of the numerical results for notch problem as well as internal and edge crack problems.  相似文献   

13.
Summary A new method is proposed, by using some special quadrature rules, for the numerical evaluation of the general type of finite-part singular integrals and integral equations with logarithmic singularities. In this way the system of such equations can be numerically solved by reduction to a system of linear equations. For this reduction, the singular integral equation is applied to a number of appropriately selected collocation points on the integration interval, and then a numerical integration rule is used for the approximation of the integrals in this equation. An application is given, to the determination of the intensity of the logarithmic singularity in a simple crack inside an infinite, isotropic solid.With 1 Figure  相似文献   

14.
A singular integral equation for the multiple crack problem of plane elasticity is formulated in this paper. In the formulation we choose the crack opening displacement (COD) as unknown function and the resultant force as the right hand term of the equation. After using Vekua's regularization procedure or making inversion of the Cauchy singular integral in the equation, a new Fredholm integral equation is obtainable. The obtained Fredholm integral equation is compact in form and easy for computation. After solving the equation, the CODs of the cracks and the stress intensity factors (SIFs) at the crack tips can be derived immediately. Similar formulation for the multiple crack problem of antiplane elasticity is also presented. Finally, numerical examples are given to demonstrate the use of the proposed integral equation approach.  相似文献   

15.
The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated.By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind.In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution.  相似文献   

16.
Within the assumptions of linear elastic fracture mechanics, dynamic stresses generated by a crack growth event are examined for the case of an infinite body in the state of plane strain subjected to mode I loading.The method of analysis developed in this paper is based on an integral equation in one spatial coordinate and in time. The kernel of this equation, i.e., the influence or Green's function, is the response of an elastic half-space to a concentrated unit impulse acting on its edge. The unknown function is the normal stress distribution in the plane of the crack, while the free term represents the effect of external loading.The solution for the stresses is obtained with the assumption that its spatial distribution contains a square root singularity near the tip of the crack, while its intensity is an unknown function of time. Thus, the orginal integral equation in space and time reduces to Volterra's integral equation of the first kind in time. The equation is singular, with the singularity of the kernel being a combined effect of the singularity of the influence function and the singularity of the dynamic stresses at the tip of the crack. Its solution is obtained numerically with the aid of a combination of quadrature and product integration methods. The case of a semi-infinite crack moving with a prescribed velocity is examined in detail.The method can be readily extended to problems involving mode II and mixed mode crack propagation as well as to problems of dynamic external loadings.  相似文献   

17.
An initial value method is derived for a set of dual integral equations encountered in solving mixed boundary value problems in mathematical physics with a circular line of separation of boundary conditions. It is shown that the solution itself, not just a transform of the solution, of the dual integral equations satisfies a Fredholm integral equation. The initial value problem is derived from this Fredholm equation.  相似文献   

18.
Three iterative methods for the numerical determination of stress intensity factors at crack tips (by using the method of singular integral equations with Cauchy-type kernels) are proposed. These methods are based on the Neumann iterative method for the solution of Fredholm integral equations of the second kind. Two of these methods are essentially used for the solution of the system of linear algebraic equations to which the singular integral equation is reduced when the direct Lobatto-Chebyshev method is used for its approximate solution, whereas the third method is a generalization of the first two and is related directly to the singular integral equation to be solved. The proposed methods are useful for the determination of stress intensity factors at crack tips. Some numerical results obtained in a crack problem show the effectiveness of all three methods.  相似文献   

19.
Y. Z. Chen  X. Y. Lin 《Acta Mechanica》2006,182(3-4):211-229
Summary In this paper, a simple layer potential and a double layer potential are suggested to solve the curved crack problem. The complex potentials in the simple layer case are formulated on the distributed dislocation along the curve. Meantime, the complex potentials in the double layer case are formulated on the crack displacement opening distribution. Behaviors of the complex potentials, for example the behaviors of increments of some physical quantities around a large circle, are analyzed in detail. Continuity and discontinuity of some physical quantities in the normal direction of the curve are analyzed, which are key points for formulating the integral equations of the problems. One weaker singular, two singular and one hypersingular integral equations are suggested to solve the problems. The relations between the kernels in different integral equations are addressed. Similarly, a simple layer potential and a double layer potential are suggested to solve the curved rigid line problem. The complex potentials in the simple layer case are formulated on the distributed forces along the curve. Meantime, the complex potentials in the double layer case are formulated on the resultant force function. One weaker singular, two singular and one hypersingular integral equations are suggested to solve the problems. When the resultant forces and moment are applied on the deformable line, the constraint equations are suggested. For more general cases, for example, in the case that the tractions applied on the two crack faces are not same in magnitude and opposite in direction, a singular integral equation is suggested. The equation is obtained by a superposition of two kinds of single layer potentials.  相似文献   

20.
The velocity on the surface of an arbitrary three-dimensional body in the potential flow of an ideal fluid is determined by means of an integral equation method. The equations to be solved are a pair of singular integral equations of the second kind, the unknowns being the desired velocity components. The integral equations are approximated by a set of linear equations, which are solved numerically. For ellipsoids the results are compared with the analytic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号