首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to the dyeing of cotton fabrics using an electrostatic self‐assembly method was evaluated. Cotton fabrics were pretreated with 2,3‐epoxypropyltrimethylammonuium chloride and cationic charges were produced on the fabric surfaces. For the dyeing of cotton fabric, reactive and acid dyes were used. Oppositely charged anionic reactive/acid dyes and cationic poly(diallyldimethylammonium chloride) were alternately deposited on the surface of cationised cotton fabrics. Ten multilayer films of dye/poly(diallyldimethylammonium chloride) were deposited on the cotton fabric surfaces using a padder. The build‐up of the multilayer films and the level of colour strength (K/S) achieved are discussed. Samples of cotton fabrics were also dyed with the same dyes, but using the exhaust method, and both types of dyed samples were compared. The washing, rubbing and light fastness properties were evaluated for the dyed fabrics.  相似文献   

2.
In this study, polyamino carboxylic acids have been used to improve the dyeability of cotton in a salt‐free reactive dyeing process. These polyamino carboxylic acids were prepared by partial carboxylation of polyvinylamine. Cotton fabric was pretreated with polyamino carboxylic acids and dyed with reactive dyes. The colour strengths of the dyed fabrics were evaluated by measuring the K/S values. The fastness properties (washing, rubbing and light fastness) of the dyed cotton fabrics were also measured. The pretreatment of cotton with polyamino carboxylic acids creates positive charges on the fabric surface. In this way, salt‐free reactive dyeing of cotton or dyeing with only a small amount of electrolyte is possible.  相似文献   

3.
Acid dyes are employed for commercially dyeing silk, which results in ionic bonds between the silk fibroin and the dye. This generally leads to low wet fastness properties for dyed silk fabrics. In this work, three commercial acid dyes with aromatic primary amine structures were selected to dye silk using a Mannich‐type reaction, resulting in improved wet fastness of dyed silk by forming covalent bonds between silk fibroin and dye. The Mannich‐type reactive dyeing was applied to silk fabrics at both 30 and 90°C in trials. Dyeing at 90°C can shorten the dyeing time compared with dyeing at 30°C, even although dye exhaustion and relative fixation at 90°C were a little lower. The dyeing process was optimised when the dyeing temperature was 90°C, dyebath pH 4, dye‐to‐formaldehyde ratio 1:30 and holding dyeing time 60 minutes. The results showed that the dye exhaustion on silk fabrics for the three aromatic primary amine‐containing acid dyes exceeded 94% and their relative fixation was over 80%. Their washing and rubbing fastness reached grade 4 or higher. Hence, the colour fastness properties of dyed silk fabrics using the Mannich‐type reactive dyeing method is superior to the conventional acid dyeing method using the same aromatic primary amine‐containing acid dyes. The Mannich‐type reactive dyeing for silk fabrics at 90°C can be developed into a novel and rapid reactive dyeing method, promising an effective dyeing process with excellent colour fastness.  相似文献   

4.
Nine new fibre reactive dyes containing a built‐in hydroxybenzophenone moiety were synthesised, characterised using electrospray mass spectroscopic analysis, applied to cotton fabrics and the ultraviolet protection factor values of the dyed cotton fabrics determined. The results showed that the anti‐ultraviolet properties of cotton were improved by dyeing with dyes containing a built‐in hydroxybenzophenone moiety, but that the benzophenone ultraviolet absorber need not be covalently linked to dye molecules to provide significant benefit.  相似文献   

5.
The present study was aimed to assess the anti‐bacterial activity and dyeing property of the pigments obtained from five fungal species. Cotton fabric and leather samples were dyed with the purified pigments and their anti‐bacterial activity was assayed under in‐vitro conditions. Post‐mordant cotton fabric and leather samples exhibited maximum bacterial reduction when compared with the pre‐mordant and dyed samples. Pigment exhaustion, colour coordinates and fastness properties of the dyed cotton fabric and leather samples were also assessed. The toxicity of the pigments was evaluated by seed germination assay.  相似文献   

6.
A new kind of hetero‐bifunctional reactive dye containing 2‐ethoxy‐4‐chloro‐s‐triazine, with better activity matching with β‐hydroxyethyl sulphone sulphate at a low fixation temperature, was successfully synthesised and characterised. An ethoxy group was designed to be introduced into triazine to increase the substantivity and the reactivity of the dyes. Thereby, the fixation of mono‐s‐chlorotriazine/hydroxyethyl sulphone sulphate (KM‐type) bifunctional reactive dyes on cotton was improved, and dyeing under mild conditions with high fixation was realised. Nineteen dyes with orange, red and blue colours were synthesised and characterised by UV‐Vis and infrared spectroscopy and mass spectrometry. Synthesised dyes were dyed at 60, 75 and 90°C, respectively. Exhaustion and reactivity for all of the ethoxy‐containing KM‐type dyes was over 90% at the optimal temperature, and fixation was over 87%, which was higher than the ethoxy‐free comparative dyes. The optimal fixation temperature of ethoxy‐containing dyes was initially reduced to 75°C, and then to 60°C. Compared with comparative dyes, the wash fastness and light fastness were basically unchanged, and the wet rub fastness of the H‐acid series was reduced by one grade.  相似文献   

7.
This study reports the formation of cyanuric chloride hydrolysate and its attachment onto cellulose fibers though covalent bonding. The hydrolysis product, 2,4‐dichloro‐6‐hydroxy‐1,3,5‐triazine, is prepared in water solution at ambient temperature, and directly used as a treatment solution for the treatment of cotton fabrics without any prior work‐up. The triazine treated fabrics are rendered antimicrobial through exposure to chlorine bleach. The oxidative chlorine bonded to the triazine‐treated cotton is very stable and regenerable to standard washing tests and UVA irradiation test. The N‐halamine modified cotton fabrics demonstrate excellent antimicrobial efficacy against Staphylococcus aureus ATCC 6538 and Escherichia coli O157:H7 ATCC 43895 with 7‐logs reductions within the contact time of 10 and 5 min, respectively. In addition, the results of in vitro cell viability test suggested that the N‐halamine modified fabrics have excellent cytocompatibility to mammalian cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40627.  相似文献   

8.
To reduce the neutral salt used in the textile finishing with s‐triazine derivatives, a novel s‐triazine‐based quaternarized N‐halamine precursor was synthesized by two simple steps and characterized by H‐NMR and FT‐IR. This compound can be effectively coated onto cellulose by nucleophilic substitution process without neutral salt. The treated cellulose was rendered with powerful biocidal efficacy after transferring to an N‐halamine structure by exposing to dilute sodium hypochlorite solution through the synergistic antimicrobial effect quaternary ammonium salt and N‐halamine. The chlorinated samples could inactivate 6‐logs of Staphylococcus aureus and Escherichia coli O157:H7 within 1 min and 5 min, respectively. In addition, about 50% of oxidant chlorine remained after 50 washing cycles and 30 days storage, and all of the lost active chlorines in the N‐halamine molecules recovered after exposing to bleach solution. With these advantages, the as‐prepared antimicrobial fabrics will have potential application, especially in the medical and healthcare textiles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44998.  相似文献   

9.
N‐(hydroxymethyl) acrylamide (NMA) was immobilized on cotton surfaces through etherification, and then methacrylamide (MA) was grafted onto the treated surface. The coatings were characterized by ATR‐IR spectroscopy and were rendered biocidal upon exposure to dilute household bleach. The treated fabrics were challenged with Gram‐negative and Gram‐positive bacteria; both NMA and NMA/MA‐treated fabrics inactivated about 8 logs of Escherichia coli O157:H7 and Staphylococcus aureus within only 5 min of contact time. The coatings were also quite stable toward ultraviolet (UVA) light exposure and repeated laundering. Moreover, a substantial improvement in wrinkle recovery angle was obtained for the NMA/MA‐treated fabrics. The new acyclic acrylamide N‐halamine coating should be less expensive to produce and use than previous cyclic N‐halamine coatings developed in these laboratories. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
In this study, the effects of polycarboxylic acid sodium salt on the dyeing of cotton with reactive dyes were evaluated by measuring and comparing the K/S values and dyeing fastnesses of the dyed cotton fabric samples. Results showed that the K/S value and dyeing fastness of cotton fabrics dyed with polycarboxylic acid sodium salt, substituting inorganic salts as exhausting agent were close to that of with sodium chloride when dip‐dyeing process was used. While, in pad‐dry dyeing, the K/S value of cotton fabric samples dyed with polyacid salts as exhausting agent was higher than that of with sodium sulfate, and the dyeing fastnesses of these samples were nearly the same. The dyeing mechanism of cotton fabric with reactive dye, using polycarboxylic acid sodium salt as exhausting agent was analyzed. The dyeing exhausting mechanism of reactive dye seems different when the inorganic salt and polycarboxylic acid sodium salt were used as exhausting agent in the dyeing of cotton fabric with reactive dye. The polycarboxylic acid sodium salt, as weak electrolyte, increased the dye‐uptake of reactive dye on cotton fabric not only by screening negative charges on cotton surface, but also by the effect of salting‐out or hydrophobic combination. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
An obvious limitation of the one‐pass continuous dyeing process for polyester/cotton blends is its inability to achieve deep colour depth, which is caused by the low dye fixation yields of commercial reactive dyes. In this study, the performances of polyester/cotton blends dyed with high‐fixation polymethylol dyes and disperse dyes were compared with those of polyester/cotton blends dyed with a mixture of reactive dyes and disperse dyes. Polymethylol dyes were observed to be suitable for dyeing polyester/cotton blends when used in low concentrations; the required concentrations of polymethylol dyes were only 23–58% of the concentrations of commercial reactive dyes required to reach a given colour level on polyester/cotton blends. The wash and crocking fastness of polyester/cotton blends dyed with polymethylol dyes were similar to those of polyester/cotton blends dyed with reactive dyes.  相似文献   

12.
Disperse dyes containing a β‐sulphatoethylsulphonyl group have temporary solubility and can be applied for dispersant‐free dyeing of hydrophobic fibre. Six novel temporarily solubilised azo disperse dyes having a β‐sulphatoethylsulphonyl group in their structures were synthesised, and their dyeing properties on polyester were investigated. As a dye intermediate, a diazo component having dibromo groups was prepared, and 4‐diethylamino‐4′‐(2‐sulphatoethylsulphonyl‐4,6‐dibromo)azobenzene dyes were prepared by a diazo‐coupling reaction. Then, the dyes containing dicyano groups were prepared by cyanation of corresponding dyes with dibromo groups. The absorption maxima of the dyes were affected by the substituents in the diazo and coupling component rings and varied from 434 to 616 nm in dimethylformamide. Polyethylene terephthalate woven fabric could be dyed with the synthesised temporarily solubilised dyes without using any dispersants. Dyebath pH affected the K/S value at maximum absorption as well as percentage exhaustion on polyethylene terephthalate fabric, and the optimum pH was 5. The dyes gave brownish orange, red, purple, and greenish blue hues on polyethylene terephthalate fabrics, and colour build‐up was good. Wash fastness was good to excellent, rubbing fastness was moderate to excellent, and light fastness was poor to moderate.  相似文献   

13.
Cationic copolymer emulsions of St, BA, AA, and GMA were successfully synthesized via semi‐continuous emulsion polymerization. The properties of synthesized cationic emulsions were characterized by monomer conversion and solid content, differential scanning calorimeter, particle size and distribution, zeta potential, and centrifugal stability. The film performance of the cationic emulsions formed on cotton fiber surface was observed by scanning electricity microscopy. The influence of cationic emulsions on the color data, K/S values and rubbing fastness of dyed cotton fabrics was also investigated. The results show that P (St‐BA‐AA‐GMA) emulsion had larger particle size and higher zeta potential than P (St‐BA‐AA) emulsion. When the films were formed at room temperature, P (St‐BA‐AA‐GMA) emulsion film had better performance than P (St‐BA‐AA) emulsion film. The addition of GMA monomers improved the film performance. P (St‐BA‐AA‐GMA) emulsion films formed at 120 °C after acetic acid solution treatment had the best water resistance. Dyed cotton fabrics pretreated with P (St‐BA‐AA‐GMA) emulsion had better pigment dyeing performance than those pretreated with P (St‐BA‐AA) emulsion. It demonstrates that the addition of GMA monomers further improved the effect of pigment dyeing for cotton fabrics with cationic emulsions as binders. With the increase of P (St‐BA‐AA‐GMA) concentration, the color performance of dye fabrics improved while the rubbing fastness decreased a little. But, the handle and fastness still meets the use standards for consumers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44987.  相似文献   

14.
This article investigates the influence of oil‐in‐water (o/w) microemulsions, used as media for both dye solubilization and dye baths, on the dye uptake on fiber surfaces. An acetic acid solution/Synperonic L7/benzyl alcohol microemulsion system was used to solubilize a water‐insoluble antimicrobial natural dye (C.I. Natural Orange 2) and to dye wool fabric at an acidic pH. The results clearly show that the dye exhaustion on the fabric took place mainly when the temperature of the dye bath promoted a change in the molecular organization of the microemulsions with the liberation of the dye solubilized in the oil droplets of the microemulsions. Although uniformly and evenly dyed fabrics were obtained, they showed very low wash fastness. To confirm the mechanism involved and to achieve dyed fabrics with good wash‐fastness properties, two different dyeing methods were also studied. The first method was dyeing at a constant low temperature, at which the o/w microemulsion remained a monophase system; the second one was dyeing at a high temperature, at which it was transformed into a multiphase system. Both the dye exhaustion and wash fastness improved considerably for the fabrics dyed at a high temperature. Moreover, uniform and even dyeing was achieved. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Two models of temporarily anionic sulphatoethylsulphone reactive disperse dyes were applied to wool, polyester and wool/polyester blend fabrics at different dyeing pH. Maximum exhaustion values and colour yield were observed at pH 7. The results showed that reactive disperse dyes containing bis‐sulphatoethylsulphone reactive groups were more convenient for neutral dyeing of wool and wool/polyester blend fabrics if compared with a dye containing a mono‐sulphatoethylsulphone group. Excellent to very good wet fastness properties on all dyed fabrics were achieved.  相似文献   

16.
The objective of the current study was to introduce the coumarin structure into a conventional reactive dye system. A fluorescent reactive dye was synthesised based upon 7‐amino‐4‐methylcoumarin. The dye was obtained by a multi‐step sequence initiated by displacement of a chlorine group from 2,4,6‐trichloro‐1,3,5‐triazine using H‐acid. Diazo coupling of 3‐aminobenzenesulphato‐ethylsulphone to this adduct, followed by a second chlorine displacement using aminomethylcoumarin completed the sequence. The fluorescent dye and the non‐fluorescent precursor were characterised by mass spectrometry, infrared spectroscopy and capillary electrophoresis. The newly synthesised dye was applied to wool fibres using an exhaust dyeing method. The exhaustion, fixation and total efficiency values were calculated by ultraviolet–visible spectrophotometric analysis of the dyebath. The synthesised red dye presented high values for exhaustion, fixation and total efficiency on the wool fibres. The novel dye, after its application to the wool fibres, exhibited fluorescence under an ultraviolet light. This feature confirmed that the novel dye retained the inherent characteristic feature of fluorescence on the wool fibres. The dyed wool fibres exhibited level 4–5 of light fastness when compared with international wool light fastness standards.  相似文献   

17.
In this work, after cationic pretreatment of cotton fabric with cetylpyridinium chloride (CPC), the compound of citric acid (CA) and succinic acid (SUA) were used as crosslinking agents to dye cotton fabrics with natural madder dye to improve the dyeing and antibacterial properties and realise the multifunctional finishing of cotton fabric. The effects of mordant dyeing, CA + SUA crosslinked dyeing, and CPC/CA + SUA crosslinked dyeing on the microstructure and properties of cotton fabrics were compared. The dyeing by the three processes occurred primarily in the amorphous zone of the fibres, and all kept the original crystalline form of the cotton. CA + SUA crosslinked dyeing and CPC/CA + SUA crosslinked dyeing increased the thermal stability of the cotton fabric. CPC/CA + SUA crosslinked dyed cotton obtained excellent dyeing results with the colour depth value (K/S) of 12.3 and rubbing fastness and washing fastness of levels 4–5, and the levelness and dye permeability were acceptable. Furthermore, the antibacterial rate against Escherichia coli and Staphylococcus aureus reached 99.99%, and the ultraviolet protection factor (UPF) reached 50+. Moreover, the wrinkle recovery angle (WRA) increased by 55% compared with raw cotton. This showed that CPC/CA + SUA crosslinked dyed cotton had excellent antibacterial, anti-ultraviolet, and anti-wrinkle performances.  相似文献   

18.
A novel phosphorus‐containing acid dye based on triphendioxazine was designed and synthesised from diphenylamine through a series of reactions. The dye has a navy‐blue colour, high molar extinction coefficient of 5.32 × 104 l/mol·cm, and high substantivity for dyeing wool in a salt‐free, aqueous dyebath. A high exhaustion value of 98.2% on wool fabrics was recorded at 3% omf and a liquor ratio of 1:20. The wash fastness values of the acid dye, including colour change and staining on cotton and wool, were grades 5, 4 and 4–5, respectively. The dry and wet fastness are grades 4–5 and 4, respectively. In addition, light fastness reaches grades 6–7 at 3% omf dye concentration. These dye properties are better than those of commercial triphendioxazine dyes, for example, CI Direct Blue 106 and CI Reactive Blue 198, under analogous dyeing conditions.  相似文献   

19.
In this study, cotton fabric and nylon fabric were dyed with a range of commercial sulphur dyes and the light and wash fastness of the coloured fabrics was investigated. The effect of after‐treating the coloured cotton and nylon fabrics with a tannin‐based commercial product, Bayprotect Cl, in the presence or absence of sodium sulphate in the treatment bath, was found to significantly improve the light fastness of the sulphur‐dyed cotton, and the photoprotective effect was partially stable to ISO 105‐C06 washing. In addition, the tannin‐based after‐treatment also improved the colour stability of the dyed fabrics to the perborate‐based ISO 105‐C06 washing. The possible mechanisms for the improved fastness properties are also discussed. The application of sulphur dyes to nylon is potentially commercially useful but has been limited because of the reported poor light fastness of the dyeings. The photoprotective effect of the tannin‐based after‐treatment was investigated with a view to providing the necessary commercial performance. However, it was established that on this fibre, the light fastness improvement was marginal, and the associated wash fastness to oxidative bleach‐based ISO 105‐C06 washing was limited.  相似文献   

20.
Optimisation of conditions for dyeing polyester with liposome‐encapsulated CI Disperse Red 50 was performed using response surface methodology. The effects of temperature, time, and lecithin:dye ratio on the colour strength of dyed fabrics were investigated by a central composite design. The coefficient of determination, the probability value in analysis of variance, and the normality plot of residuals demonstrated sufficient significance of the proposed fitness function. It was found that the temperature and time of the dyeing cycle were effective factors in the dyeing of polyester fabrics with encapsulated dye. It was also established that the colour yield of dyed fabrics was above 25 in the case of a dyeing time of >80 min, a lecithin:dye ratio of ≤2, and a temperature of ca. 128 °C. Comparison of colour strengths produced by liposome‐encapsulated dye and commercial dye revealed that there was approximately the same build‐up on polyester. Dyeings from encapsulated CI Disperse Red 50 exhibited very similar fastness to dyeings from conventional CI Disperse Red 50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号