首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gonad of the Caenorhabditis elegans hermaphrodite is generated by the postembryonic divisions of two somatic precursors, Z1 and Z4, and two germline precursors, Z2 and Z3. These cells begin division midway through the first larval stage. By the end of the fourth larval stage, Z1 and Z4 produce 143 descendants, while Z2 and Z3 give rise to approximately 1000 descendants. The divisions of Z2 and Z3 are dependent on signals produced by Z1 and Z4, but not vice versa. We have characterized the properties of five loss-of-function alleles of a newly described gene, which we call gon-2. In gon-2 mutants, gonadogenesis is severely impaired; in some animals, none of the gonad progenitors undergo any postembryonic divisions. Mutations in gon-2 have a partial maternal effect: either maternal or zygotic expression is sufficient to prevent the severe gonadogenesis defects. By cell lineage analysis, we found that the priman, defect in gon-2 mutants is a delay (sometimes a complete block) in the onset and continuation of gonadal divisions. The results of upshift experiments using a temperature-sensitive allele suggest that zygotic expression of gon-2 begins early in embryogenesis, before the birth of Z1 and Z4. The results of downshift experiments suggest that Z1 and Z4 can generate the full complement of gonadal tissues even when gon-2 function is inhibited until the end of the second larval stage. Thus, gon-2 activity is probably not required for the specification of gonadal cell fates, but appears to be generally required for gonadal cell divisions.  相似文献   

2.
Three female patients with osteoarthrotic hips received total hip replacement arthroplasties after failed rotational acetabular osteotomies (RAO) were reported. In the first case, there was necrosis of the thin acetabular fragment and a collapse of the large grafted iliac bone because of technical problems. The second case had residual development dislocation of the hip preoperatively which resulted in pseudoarthrosis and instability of the pubic bone postoperatively. This patient was considered to be a bad candidate for rotational acetabular osteotomy. The last case was 65 years old, too old to treat by osteotomy. Deterioration of the articular cartilage was expected. All of them were successfully treated with total hip arthroplasties. The ages of the patients, the stage of osteoarthrosis, the thickness of the osteotomized acetabular fragment, and the size of the grafted bone seemed to be factors influencing the outcome of the RAO.  相似文献   

3.
4.
A unique and essential feature of germ cells is their immortality. In Caenorhabditis elegans, germline immortality requires the maternal contribution from four genes, mes-2, mes-3, mes-4 and mes-6. We report here that mes-2 encodes a protein similar to the Drosophila Polycomb group protein, Enhancer of zeste, and in the accompanying paper that mes-6 encodes another Polycomb group protein. The Polycomb group is responsible for maintaining proper patterns of expression of the homeotic and other genes in Drosophila. It is thought that Polycomb group proteins form heteromeric complexes and control gene expression by altering chromatin conformation of target genes. As predicted from its similarity to a Polycomb group protein, MES-2 localizes to nuclei. MES-2 is found in germline nuclei in larval and adult worms and in all nuclei in early embryos. By the end of embryogenesis, MES-2 is detected primarily in the two primordial germ cells. The correct distribution of MES-2 requires the wild-type functions of mes-3 and mes-6. We hypothesize that mes-2 encodes a maternal regulator of gene expression in the early germline; its function is essential for normal early development and viability of germ cells.  相似文献   

5.
BACKGROUND: During metazoan development, cell diversity arises primarily from asymmetric cell divisions which are executed in two phases: segregation of cytoplasmic factors and positioning of the mitotic spindle - and hence the cleavage plane -relative to the axis of segregation. When polarized cells divide, spindle alignment probably occurs through the capture and subsequent shortening of astral microtubules by a site in the cortex. RESULTS: Here, we report that dynactin, the dynein-activator complex, is localized at cortical microtubule attachment sites and is necessary for mitotic spindle alignment in early Caenorhabditis elegans embryos. Using RNA interference techniques, we eliminated expression in early embryos of dnc-1 (the ortholog of the vertebrate gene for p150(Glued)) and dnc-2 (the ortholog of the vertebrate gene for p50/Dynamitin). In both cases, misalignment of mitotic spindles occurred, demonstrating that two components of the dynactin complex, DNC-1 and DNC-2, are necessary to align the spindle. CONCLUSIONS: Dynactin complexes may serve as a tether for dynein at the cortex and allow dynein to produce forces on the astral microtubules required for mitotic spindle alignment.  相似文献   

6.
A genetic analysis of a gp330/megalin-related protein, LRP-1, has been undertaken in Caenorhabditis elegans. Consistent with megalin's being essential for development of mice, likely null mutations reveal that this large member of the low density lipoprotein receptor family is also essential for growth and development of this nematode. The mutations confer a striking defect, an inability to shed and degrade all of the old cuticle at each of the larval molts. The mutations also cause an arrest of growth usually at the molt from the third to the fourth larval stage. Genetic mosaic analysis suggests that the lrp-1 gene functions in the major epidermal syncytium hyp7, a polarized epithelium that secretes cuticle from its apical surface. Staining of whole mounts with specific monoclonal antibodies reveals that the protein is expressed on the apical surface of hyp7. Sterol starvation can phenocopy the lrp-1 mutations, suggesting that LRP-1 is a receptor for sterols that must be endocytosed by hyp7. These observations indicate that LRP-1 is related to megalin not only structurally but also functionally.  相似文献   

7.
The nonrandom segregation of organelles to the appropriate compartment during asymmetric cellular division is observed in many developing systems. Caenorhabditis elegans spermatogenesis is an excellent system to address this issue genetically. The proper progression of spermatogenesis requires specialized intracellular organelles, the fibrous body-membranous organelle complexes (FB-MOs). The FB-MOs play a critical role in cytoplasmic partitioning during the asymmetric cellular division associated with sperm meiosis II. Here we show that spe-5 mutants contain defective, vacuolated FB-MOs and usually arrest spermatogenesis at the spermatocyte stage. Occasionally, spe-5 mutants containing defective FB-MOs will form spermatids that are capable of differentiating into functional spermatozoa. These spe-5 spermatids exhibit an incomplete penetrance for tubulin mis-segregation during the second meiotic division. In addition to morphological and FB-MO segregation defects, all six spe-5 mutants are cold-sensitive, exhibiting a more penetrant sterile phenotype at 16 degrees than 25 degrees. This cold sensitivity could be an inherent property of FB-MO morphogenesis.  相似文献   

8.
Nervous system assembly requires the directed migrations of cells and axon growth cones along the dorsoventral and anteroposterior axes. Although guidance mechanisms for dorsoventral migrations are conserved from nematodes to mammals, mechanisms for anteroposterior migrations are unknown. In C. elegans, the gene vab-8, which specifically functions in posteriorly directed migrations, encodes two isoforms of a novel intracellular protein that act cell-autonomously in different migrations. VAB-8L, which contains a domain similar to kinesin-like motors, functions in all vab-8-dependent axon growth cone migrations. VAB-8S, which lacks this N-terminal domain, functions in a subset of vab-8-dependent cell migrations. Continuous expression of VAB-8L in the ALM mechanosensory neuron, which normally requires vab-8 early in its development for posteriorly directed cell migration, redirects its anteriorly projecting axon posteriorly. We propose that regulation of vab-8 activity is a mechanism for controlling the direction of cell and axon growth cone migrations.  相似文献   

9.
SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (. Genetics. 142:393-406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE-associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.  相似文献   

10.
In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.  相似文献   

11.
By the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C zeta (PKCzeta) as a bait, we have cloned a gene coding for a novel PKCzeta-interacting protein homologous to the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth and fasciculation. The protein designated FEZ1 (fasciculation and elongation protein zeta-1) consisting of 393 amino acid residues shows a high Asp/Glu content and contains several regions predicted to form amphipathic helices. Northern blot analysis has revealed that FEZ1 mRNA is abundantly expressed in adult rat brain and throughout the developmental stages of mouse embryo. By the yeast two-hybrid assay with various deletion mutants of PKC, FEZ1 was shown to interact with the NH2-terminal variable region (V1) of PKCzeta and weakly with that of PKCepsilon. In the COS-7 cells coexpressing FEZ1 and PKCzeta, FEZ1 was present mainly in the plasma membrane, associating with PKCzeta and being phosphorylated. These results indicate that FEZ1 is a novel substrate of PKCzeta. When the constitutively active mutant of PKCzeta was used, FEZ1 was found in the cytoplasm of COS-7 cells. Upon treatment of the cells with a PKC inhibitor, staurosporin, FEZ1 was translocated from the cytoplasm to the plasma membrane, suggesting that the cytoplasmic translocation of FEZ1 is directly regulated by the PKCzeta activity. Although expression of FEZ1 alone had no effect on PC12 cells, coexpression of FEZ1 and constitutively active PKCzeta stimulated the neuronal differentiation of PC12 cells. Combined with the recent finding that a human FEZ1 protein is able to complement the function of UNC-76 necessary for normal axonal bundling and elongation within axon bundles in the nematode, these results suggest that FEZ1 plays a crucial role in the axon guidance machinery in mammals by interacting with PKCzeta.  相似文献   

12.
An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I-arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.  相似文献   

13.
Tests of facial recognition and spatial learning were administered to presurgical patients with unilateral temporal lobe EEG foci. Right temporal lobe patients obtained lower facial recognition scores than left temporal lobe patients. The groups performed equally on the spatial learning test. A factor analysis revealed two independent factors: a general visuospatial factor and a more specific facial identification factor. The findings provide support for the existence of two dissociable visual processing systems. Memory impairments associated with right temporal lobe dysfunction may be characterized as an impairment in a ventral visual processing system responsible for facial memory and pattern recognition.  相似文献   

14.
S. cerevisiae Ipl1, Drosophila Aurora, and the mammalian centrosomal protein IAK-1 define a new subfamily of serine/threonine kinases that regulate chromosome segregation and mitotic spindle dynamics. Mutations in ipl1 and aurora result in the generation of severely aneuploid cells and, in the case of aurora, monopolar spindles arising from a failure in centrosome separation. Here we show that a related, essential protein from C. elegans, AIR-1 (Aurora/Ipl1 related), is localized to mitotic centrosomes. Disruption of AIR-1 protein expression in C. elegans embryos results in severe aneuploidy and embryonic lethality. Unlike aurora mutants, this aneuploidy does not arise from a failure in centrosome separation. Bipolar spindles are formed in the absence of AIR-1, but they appear to be disorganized and are nucleated by abnormal-looking centrosomes. In addition to its requirement during mitosis, AIR-1 may regulate microtubule-based developmental processes as well. Our data suggests AIR-1 plays a role in P-granule segregation and the association of the germline factor PIE-1 with centrosomes.  相似文献   

15.
A >23-kb gene that encodes a large integral membrane protein with a predicted structure similar to that of the low density lipoprotein (LDL) receptor-related protein (LRP) of mammals has been isolated and sequenced from the free-living nematode Caenorhabditis elegans. The 4753-amino acid predicted C. elegans product shares a nearly identical number and arrangement of amino acid sequence motifs with human LRP, and several exons of the C. elegans LRP gene correspond to exons of related parts of the human LDL receptor gene. The existence of an apparent homolog of LRP in C. elegans offers the possibility of genetic analysis of the in vivo roles of LRP and of the relationship between protein structure and function in a simple model organism.  相似文献   

16.
CHR3 is a Caenorhabditis elegans orphan nuclear hormone receptor highly homologous to Drosophila DHR3, an ecdysone-inducible gene product involved in metamorphosis. Related vertebrate factors include RORalpha/RZRalpha, RZRbeta and RevErb. Gel-shift studies show that CHR3 can bind the DR5-type hormone response sequence. CHR3 is a nuclear protein present in all blastomeres during early embryogenesis. During morphogenesis, both CHR3 protein and zygotically active reporter genes are detectable in epidermal cells and their precursors. Inhibition of the gene encoding CHR3 results in several larval defects associated with abnormal epidermal cell function, including molting and body size regulation, suggesting that CHR3 is an essential epidermal factor required for proper postembryonic development.  相似文献   

17.
The neurotransmitter GABA has been proposed to play a role during nervous system development. We show that the Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase (GAD), the GABA biosynthetic enzyme. unc-25 is expressed specifically in GABAergic neurons. Null mutations in unc-25 eliminate the UNC-25 protein or alter amino acids conserved in all known GADs, result in a complete lack of GABA, and cause defects in all GABA-mediated behaviors. In unc-25 mutants the GABAergic neurons have normal axonal trajectories and synaptic connectivity, and the size and shape of synaptic vesicles are normal. The number of synaptic vesicles at GABAergic neuromuscular junctions is slightly increased. Cholinergic ventral nerve cord neurons, which innervate the same muscles as GABAergic ventral cord neurons, have normal morphology, connectivity, and synaptic vesicles. We conclude that GAD activity and GABA are not necessary for the development or maintenance of neuromuscular junctions in C. elegans.  相似文献   

18.
Avermectins are a class of macrocyclic lactones that is widely used in crop protection and to treat helminth infections in man and animals. Two complementary DNAs (GluClalpha and GluClbeta) encoding chloride channels that are gated by avermectin and glutamate, respectively, were isolated from Caenorhabditis elegans. To study the role of these subunits in conferring avermectin sensitivity we isolated a mutant C. elegans strain with a Tc1 transposable element insertion that functionally inactivated the GluClalpha gene (GluClalpha::Tc1). GluClalpha::Tc1 animals exhibit a normal phenotype including typical avermectin sensitivity. Xenopus oocytes expressing GluClalpha::Tc1 strain mRNA elicited reduced amplitude avermectin and glutamate-dependent chloride currents. Avermectin binding assays in GluClalpha::Tc1 strain membranes showed the presence of high affinity binding sites, with a reduced Bmax. These experiments suggest that GluClalpha is a target for avermectin and that additional glutamate-gated and avermectin-sensitive chloride channel subunits exist in C. elegans. We isolated a cDNA (GluClalpha2) encoding a chloride channel that shares 75% amino acid identity with GluClalpha. This subunit forms homomeric channels that are gated irreversibly by avermectin and reversibly by glutamate. GluClalpha2 coassembles with GluClbeta to form heteromeric channels that are gated by both ligands. The presence of subunits related to GluClalpha may explain the low level and rarity of target site involvement in resistance to the avermectin class of compounds.  相似文献   

19.
Asymmetric cell divisions, critically important to specify cell types in the development of multicellular organisms, require polarized distribution of cytoplasmic components and the proper alignment of the mitotic apparatus. In Caenorhabditis elegans, the maternally expressed protein, PAR-3, is localized to one pole of asymmetrically dividing blastomeres and is required for these asymmetric divisions. In this paper, we report that an atypical protein kinase C (PKC-3) is essential for proper asymmetric cell divisions and co-localizes with PAR-3. Embryos depleted of PKC-3 by RNA interference die showing Par-like phenotypes including defects in early asymmetric divisions and mislocalized germline-specific granules (P granules). The defective phenotypes of PKC-3-depleted embryos are similar to those exhibited by mutants for par-3 and another par gene, par-6. Direct interaction of PKC-3 with PAR-3 is shown by in vitro binding analysis. This result is reinforced by the observation that PKC-3 and PAR-3 co-localize in vivo. Furthermore, PKC-3 and PAR-3 show mutual dependence on each other and on three of the other par genes for their localization. We conclude that PKC-3 plays an indispensable role in establishing embryonic polarity through interaction with PAR-3.  相似文献   

20.
Mutations in mes-2, mes-3, mes-4, and mes-6 result in maternal-effect sterility: hermaphrodite offspring of mes/mes mothers are sterile because of underproliferation and death of the germ cells, as well as an absence of gametes. Mutant germ cells do not undergo programmed cell death, but instead undergo a necrotic-type death, and their general poor health apparently prevents surviving germ cells from forming gametes. Male offspring of mes mothers display a significantly less severe germline phenotype than their hermaphrodite siblings, and males are often fertile. This differential response of hermaphrodite and male offspring to the absence of mes+ product is a result of their different X chromosome compositions; regardless of their sexual phenotype, XX worms display a more severe germline phenotype than XO worms, and XXX worms display the most severe phenotype. The sensitivity of the mutant phenotype to chromosome dosage, along with the similarity of two MES proteins to chromatin-associated regulators of gene expression in Drosophila, suggest that the essential role of the mes genes is in control of gene expression in the germline. An additional, nonessential role of the mes genes in the soma is suggested by the surprising finding that mutations in the mes genes, like mutations in dosage compensation genes, feminize animals whose male sexual identity is somewhat ambiguous. We hypothesize that the mes genes encode maternally supplied regulators of chromatin structure and gene expression in the germline and perhaps in somatic cells of the early embryo, and that at least some of their targets are on the X chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号