首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of Escherichia coli heat-stable enterotoxin B (STb) to the human intestinal epithelial cell lines T84 and HT29 and to polarized T84 cells was studied to define the initial interaction of this peptide toxin with target cells. Equilibrium and competitive binding isotherms showed that 125I-STb bound specifically to T84 and HT29 cells; however, the toxin-epithelial cell interactions could be characterized by low-affinity binding (< or = 10(5) M(-1)) to a high number of binding sites (> or = 10(6) per cell). STb binding to T84 and HT29 cells as a function of 125I-STb concentration did not approach saturation at levels well above the effective biological concentration of STb for fluid secretion. Treatment of the 125I-STb-bound T84 and HT29 cells with an acidic saline solution to remove surface-bound toxin revealed that only approximately 55% +/- 10% of 125I-STb could be removed by this treatment at 4 degrees C, suggesting that approximately half of the bound STb was stably associated with the plasma membrane and/or internalized into the cytoplasm. Similar results were obtained when binding and internalization experiments were conducted at 22 and 37 degrees C. Immunofluorescence studies demonstrated that the strongest signal for STb appeared in the plasma membrane even after acid treatment. Toxin-treated cells also displayed diffuse cytoplasmic staining, indicating that once cell bound, STb did not appear to preferentially associate with membrane vesicles or cellular organelles. Binding and subsequent internalization of 125I-STb were not affected by treatment of the cells with trypsin, endoglycosidase F/peptide N-glycosidase F, Vibrio cholerae neuraminidase, tunicamycin, or 5 mM sodium chlorate, which blocks sulfation of surface proteoglycans. In addition, the internalization process was not altered by preincubation of the cells with the cytoskeleton inhibitors cytochalasin D and colchicine or cellular perturbants (i.e., 0.45 M sucrose and 5 mM sodium azide), indicating that cell surface proteins or carbohydrates did not function as STb receptors. The binding of 125I-STb to polarized T84 cells was also examined, and the total and nonspecific binding isotherms were found to overlap, indicating that the apical surface of polarized T84 cells did not contain a specific receptor for STb. In comparison to undifferentiated cells, twice the amount of bound STb (approximately 80% +/- 10%) was removable from polarized T84 cells after treatment with acidic solution. The percentage of surface-bound STb to polarized T84 cells did not vary significantly with the transepithelial electrical resistance of the cells or when STb was applied basolaterally. Together, our results indicate that STb binds with relatively low affinity to the plasma membrane of cultured intestinal epithelial cells and polarized T84 cells, probably to membrane lipids, and becomes stably associated with the lipid bilayer. The fact that a significant portion of the bound STb becomes free in the cytoplasm, even at a low temperature, suggests that the bound toxin may directly traverse the membrane bilayer.  相似文献   

2.
Using a quantitative dot blot overlay assay of polyvinylidene difluoride membranes, we investigated the ability of Escherichia coli heat-stable enterotoxin b (STb) to bind to various glycolipids of defined structure. STb bound strongly to acidic glycosphingolipids, including sulfatide (or 3'-sulfogalactosylceramide) and several gangliosides, but not significantly to their derivatives, galactosylceramide and asialogangliosides, respectively. STb exhibited the highest binding affinity for sulfatide. STb bound to pure sulfatide in a dose-dependent and saturable manner, with a detection level of a few nanograms. The binding was not inhibited by tetramethylurea, which is a strong disrupter of hydrophobic interactions, or by the anionic sulfated polymer of glucose, dextran sulfate, indicating that the binding is not due solely to either hydrophobic or ionic interactions via the sulfate group of the sulfatide. The specificity of the binding was confirmed by the finding that a 500-fold molar excess of sulfatide inhibited STb binding by approximately 45%, whereas no competition was obtained with galactosylceramide under the same conditions. Taken together, our data indicated that a galactose residue linked to a sulfate group is required for the binding specificity of STb. Then, total lipids extracted either from the mucous layer or from the epithelial cells of the pig jejunum brush border, the natural target of STb, were analyzed by thin-layer chromatography (TLC). Both extracts contained a lipidic molecule with a relative mobility on a TLC plate similar to that of the sulfatide standard. The migrated lipid extracted directly from a preparative TLC plate was confirmed to be sulfatide, as it was recognized by laminin, a sulfated glycolipid binding protein, and by a monoclonal antibody directed against sulfatide. In an overlay assay on PVDF membranes, STb bound to the sulfatide prepared from porcine jejunum as well as to the sulfatide standard. Thus, these findings suggest that the terminal oligosaccharide sequence Gal(3SO4)beta1- on sulfatide could mediate binding of STb to its target cells and, in support of a recent report (E. Rousset, J. Harel, and J. D. Dubreuil, Microb. Pathog. 24:277-288, 1998), probably terminal sialic acid residue on another glycosphingolipid. Moreover, pretreatment in the ligated intestinal loop assay with laminin or sulfatase altered the biological activity of STb. In summary, we present data indicating that sulfatide represents a functional receptor for the STb toxin.  相似文献   

3.
Escherichia coli (E. coli) heat-labile toxin (LT) is a potent mucosal immunogen and immunoadjuvant towards co-administered antigens. LT is composed of one copy of the A subunit, which has ADP-ribosylation activity, and a homopentamer of B subunits, which has affinity for the toxin receptor, the ganglioside GM1. Both the ADP-ribosylation activity of LTA and GM1 binding of LTB have been proposed to be involved in immune stimulation. We investigated the roles of these activities in the immunogenicity of recombinant LT or LTB upon intranasal immunization of mice using LT/LTB mutants, lacking either ADP-ribosylation activity, GM1-binding affinity, or both. Likewise, the adjuvant properties of these LT/LTB variants towards influenza virus subunit antigen were investigated. With respect to the immunogenicity of LT and LTB, we found that GM1-binding activity is essential for effective induction of anti-LTB antibodies. On the other hand, an LT mutant lacking ADP-ribosylation activity retained the immunogenic properties of the native toxin, indicating that ADP ribosylation is not critically involved. Whereas adjuvanticity of LTB was found to be directly related to GM1-binding activity, adjuvanticity of LT was found to be independent of GM1-binding affinity. Moreover, a mutant lacking both GM1-binding and ADP-ribosylation activity, also retained adjuvanticity. These results demonstrate that neither ADP-ribosylation activity nor GM1 binding are essential for adjuvanticity of LT, and suggest an ADP-ribosylation-independent adjuvant effect of the A subunit.  相似文献   

4.
We describe a simple method for enzymatic synthesis of L and D amino acids from alpha-keto acids with Escherichia coli cells which express heterologous genes. L-amino acids were produced with thermostable L-amino acid dehydrogenase and formate dehydrogenase (FDH) from alpha-keto acids and ammonium formate with only an intracellular pool of NAD+ for the regeneration of NADH. We constructed plasmids containing, in addition to the FDH gene, the genes for amino acid dehydrogenases, including i.e., leucine dehydrogenase, alanine dehydrogenase, and phenylalanine dehydrogenase. L-Leucine, L-valine, L-norvaline, L-methionine, L-phenylalanine, and L-tyrosine were synthesized with the recombinant E. coli cells with high chemical yields (> 80%) and high optical yields (up to 100% enantiomeric excess). Stereospecific conversion of various alpha-keto acids to D amino acids was also examined with recombinant E. coli cells containing a plasmid coding for the four heterologous genes of the thermostable enzymes D-amino acid aminotransferase, alanine racemase, L-alanine dehydrogenase, and FDH. Optically pure D enantiomers of glutamate and leucine were obtained.  相似文献   

5.
X Yang  L Yu  D He  CA Yu 《Canadian Metallurgical Quarterly》1998,273(48):31916-31923
When purified ubiquinone (Q)-depleted succinate-ubiquinone reductase from Escherichia coli is photoaffinity-labeled with 3-azido-2-methyl-5-methoxy-[3H]6-geranyl-1,4-benzoquinone ([3H]azido-Q) followed by SDS-polyacrylamide gel electrophoresis, radioactivity is found in the SdhC subunit, indicating that this subunit is responsible for ubiquinone binding. An [3H]azido-Q-linked peptide, with a retention time of 61.7 min, is obtained by high performance liquid chromatography of the protease K digest of [3H]azido-Q-labeled SdhC obtained from preparative SDS-polyacrylamide gel electrophoresis on labeled reductase. The partial N-terminal amino acid sequence of this peptide is NH2-TIRFPITAIASILHRVS-, corresponding to residues 17-33. The ubiquinone-binding domain in the proposed structural model of SdhC, constructed based on the hydropathy plot of the deduced amino acid sequence of this protein, is located at the N-terminal end toward the transmembrane helix I. To identify amino acid residues responsible for ubiquinone binding, substitution mutations at the putative ubiquinone-binding region of SdhC were generated and characterized. E. coli NM256 lacking genomic succinate-Q reductase genes was constructed and used to harbor the mutated succinate-Q reductase genes in a low copy number pRKD418 plasmid. Substitution of serine 27 of SdhC with alanine, cysteine, or threonine or substitution of arginine 31 with alanine, lysine, or histidine yields cells unable to grow aerobically in minimum medium with succinate as carbon source. Furthermore, little succinate-ubiquinone reductase activity and [3H]azido-Q uptake are detected in succinate-ubiquinone reductases prepared from these mutant cells grown aerobically in LB medium. These results indicate that the hydroxyl group, the size of the amino acid side chain at position 27, and the guanidino group at position 31 of SdhC are critical for succinate-ubiquinone reductase activity, perhaps by formation of hydrogen bonds with carbonyl groups of the 1,4-benzoquinone ring of the quinone molecule. The hydroxyl group, but not the size of the amino acid side chain, at position 33 of SdhC is also important, because Ser-33 can be substituted with threonine but not with alanine.  相似文献   

6.
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) which is tyrosine-phosphorylated following transfer to the host cell to become a receptor for intimin-mediated intimate attachment and 'attaching and effacing' (A/E) lesion formation. The structural basis for protein translocation has yet to be fully elucidated for any type III secretion system. Here, we describe a novel EspA-containing filamentous organelle that is present on the bacterial surface during the early stage of A/E lesion formation, forms a physical bridge between the bacterium and the infected eukaryotic cell surface and is required for the translocation of EspB into infected epithelial cells.  相似文献   

7.
The nucleic acid-binding domain of Escherichia coli DNA topoisomerase III (Topo III) has been identified using a selection procedure designed to isolate inactive Topo III polypeptides. Deletion of this binding domain, contained in the carboxyl terminus of Topo III, results in a drastic reduction in the ability of the enzyme to bind to single-stranded DNA and RNA substrates. Successive truncation of the enzyme within this region results in the gradual loss of nucleic acid binding activity and in a gradual change in the mechanism of Topo III-catalyzed relaxation of negatively supercoiled DNA. The reduction of nucleic acid binding activity of the truncated polypeptides does not result in a loss of cleavage site specificity for the enzyme, suggesting that other amino acids are involved in the positioning of the nucleic acid within the nicking/closing site of the topoisomerase.  相似文献   

8.
Cholera toxin (CT) produced by Vibrio cholerae and heat-labile enterotoxin (LT-I), produced by enterotoxigenic Escherichia coli, are AB5 heterohexamers with an ADP-ribosylating A subunit and a GM1 receptor binding B pentamer. These toxins are among the most potent mucosal adjuvants known and, hence, are of interest both for the development of anti-diarrheal vaccines against cholera or enterotoxigenic Escherichia coli diarrhea and also for vaccines in general. However, the A subunits of CT and LT-I are known to be relatively temperature sensitive. To improve the thermostability of LT-I an additional disulfide bond was introduced in the A1 subunit by means of the double mutation N40C and G166C. The crystal structure of this double mutant of LT-I has been determined to 2.0 A resolution. The protein structure of the N40C/G166C double mutant is very similar to the native structure except for a few local shifts near the new disulfide bond. The introduction of this additional disulfide bond increases the thermal stability of the A subunit of LT-I by 6 degrees C. The enhancement in thermostability could make this disulfide bond variant of LT-I of considerable interest for the design of enterotoxin-based vaccines.  相似文献   

9.
In vitro uptake of 14C-labelled amino acids by segments of small intestine was determined in sucking (2-4-d-old) Wistar rats. Intragastric injections of heat-stable (ST) toxin of enterotoxigenic Escherichia coli (ETEC) were given to produce fluid accumulation, defined as a gut weight: carcass weight value of > 0.085. Continued active uptake of the prototypic amino acids, leucine (by active transport system 1 for monoamino monocarboxylic (neutral) amino acids), lysine (by active transport system 2 for dibasic amino acids), and proline (by active transport system 3 for N-substituted amino acids), persisted during the active fluid accumulation response to ETEC ST toxin. The mean Kt and mean Vmax of the amino acid transport systems were similar in control (non-injected) and ST toxin-injected rats. The present study provides a scientific basis for the use of amino acids in oral rehydration solutions utilizing amino acid transport systems which are linked to absorption of Na (and water) so that reduction in diarrhoeal stools can be achieved, and emphasizes the importance of maintaining feeding during acute diarrhoea to prevent development of malnutrition.  相似文献   

10.
Escherichia coli heat-stable enterotoxin b (STb) causes severe diarrhoea in weaning piglets. STb most probably has to bind to intestinal epithelial cells in order to achieve its effect. Using biotinylated biologically active STb, we developed a semi-quantitative binding assay using indirect fluorescence microscopy. We demonstrated the attachment of the biotinylated toxin to microvilli of the pig jejunum. However, binding was abolished when biotinylated STb was either boiled or treated with 2-mercaptoethanol, treatments known to abolish biological activity. Different characteristics of STb attachment to the pig small intestine were determined. The reaction was rapid and reached maximum intensity after approximately 10 min. The binding was pH dependent showing an optimum at pH 5.8. Incubation at either 4 degrees C, 25 degrees C or 37 degrees C did not affect the binding. No competition was observed with non-biotinylated STb. However, preincubation of biotinylated STb with streptavidin conjugated to horseradish peroxidase completely abolished the binding. Pig tissues other than jejunum demonstrated binding towards STb including duodenum, ileum, caecum, colon, liver, lung, spleen and kidney. The molecule involved was then partially characterized. Metaperiodate treatment of the jejunum sections abrogated binding but protease treatment had no effect. Enzymatic treatments of jejunal sections demonstrated that N- and O-glycosidases, and several exoglycosidases did not affect binding, whereas reduced binding was observed with ceramide glycanase and alpha-glucosidase, and was completely abolished following neuraminidase treatment. Overall, our results suggest that in vitro STb binding was rapid, pH dependent, temperature independent, not restricted to jejunum and involves a molecule that seems to be composed of a ceramide moiety, terminal neuraminic acid and/or alpha-linked terminal glucose residue(s).  相似文献   

11.
12.
Two Lactobacillus isolates, Lact. acidophilus I 26 and Lact. fermentum I 25, were selected, based on their poor aggregation with Escherichia coli and strong ability to adhere to ileal epithelial cells (IEC), to study in vitro interactions with E. coli O1:K1, O2:K1 and O78:K80 in an IEC radioactive-assay under the conditions of exclusion (lactobacilli and IEC, followed by the addition of E. coli), competition (lactobacilli, IEC and E. coli together) and displacement (E. coli and IEC, followed by the addition of lactobacilli). The results indicated that Lact. acidophilus I 26 and Lact. fermentum I 25 could not significantly reduce the attachment of E. coli O1:K1, O2:K1 and O78:K80 to IEC under the three conditions tested in vitro, except that the attachment of E. coli O1:K1 was slightly reduced by Lact. fermentum I 25 in the test for competition.  相似文献   

13.
In vitro gene manipulation was used to develop a novel chimeric antigen consisting of the non-toxic B subunit (EtxB) of an E. coli enterotoxin and the first 14 N-terminal amino acid residues of the carboxy-terminal portion of the alpha subunit of bovine inhibin (bINH1-14). Rabbits immunized subcutaneously (s.c.) or intravenously (i.v.) with EtxB::bINH1-14, with or without Freund's adjuvant, developed significant titres of antibodies that recognized an inhibin peptide fragment containing bINH1-14, native inhibins, and EtxB during separate enzyme-linked immunosorbent assay (ELISA). Passive immunization of mice with the rabbit anti-EtxB::bINH1-14 serum increased concentrations of follicle-stimulating hormone (FSH) in serum twofold compared with controls, whereas serum concentrations of luteinizing hormone (LH) were unaltered. Since FSH is the primary hormone from the pituitary gland that stimulates ovarian follicle growth and spermatogenesis, the results of this study demonstrate that EtxB::bINH1-14 has potential as antigen for development of inhibin-based fertility vaccines.  相似文献   

14.
SecA undergoes conformational changes during translocation, inserting domains into and across the membrane or enhancing the protease resistance of these domains. We now show that some SecA bound at SecYEG is accessible from the periplasm to a membrane-impermeant probe in cells with a permeabilized outer membrane but an intact plasma membrane.  相似文献   

15.
OBJECTIVE: The universal cellular response to stress is the expression of a family of genes known as heat shock or stress proteins. We investigated whether bacteria or bacterial products (endotoxin) can induce heat shock protein expression in human enterocytes. DESIGN: Controlled, in vitro study. SETTING: Cell culture laboratory. SUBJECTS: Human Caco-2 enterocyte cell line. MEASUREMENTS AND MAIN RESULTS: Incubation of confluent monolayers of Caco-2 cells with Escherichia coli C25 (1 x 10(9) bacteria/mL) for 1 hr at 37 degrees C was found to induce the expression of the 72-kilodalton molecular weight heat shock protein gene (heat shock protein-72), the major inducible form of the 70-kilodalton molecular weight heat shock protein family of stress proteins, as detected by Western blot analysis. The level of heat shock protein-72 induction after incubation with E. coli was similar to the response of Caco-2 cells to heat shock at 43 degrees C for 1 hr. The induction of heat shock protein-72 gene expression by E. coli was not purely due to the process of phagocytosis, since incubation of Caco-2 cells with latex beads (1 micron) failed to induce heat shock gene expression. To elucidate the possible mechanism of heat shock protein-72 induction mediated by bacteria, Caco-2 cells were incubated with E. coli endotoxin (200 micrograms/mL) for 1 hr at 37 degrees C. Such treatment was also found to induce the synthesis of heat shock protein-72. CONCLUSIONS: These results demonstrate that bacteria and/or bacterial products induce the heat shock gene expression in Caco-2 cells. Since intestinal epithelial cells are constantly in contact with bacteria and bacterial products, we speculate that the heat shock gene expression may be part of the natural mechanism of protection for these cells in the potentially harmful environment that may be present in the intestinal tract.  相似文献   

16.
17.
We have expressed the RecD subunit of the RecBCD enzyme from Escherichia coli as a fusion protein with a 31-amino acid NH2-terminal extension including 6 consecutive histidine residues (HisRecD). The overexpressed fusion protein can be purified in urea-denatured form by metal chelate affinity chromatography. The mixture of renatured HisRecD protein and the RecB and RecC proteins has a high level of ATP-dependent nuclease activity with either single- or double-stranded DNA, enhanced DNA unwinding activity, enhanced ATP hydrolysis activity in the presence of a small DNA oligomer cosubstrate, and chi-cutting activity. These are all characteristics of the RecBCD holoenzyme. The HisRecD protein by itself hydrolyzes ATP in the presence of high concentrations of single-stranded DNA (polydeoxythymidine). The activity is unstable at 37 degrees C, but is measurable at room temperature (about 23 degrees C). The HisRecD has very little ATPase activity in the presence of a much shorter single-stranded DNA (oligodeoxy(thymidine)12). HisRecD hydrolyzes ATP more efficiently than GTP and UTP, and has very little activity with CTP. We also purified a fusion protein containing a Lys to Gln mutation in the putative ATP-binding site of RecD. This mutant protein has no ATPase activity, indicating that the observed ATP hydrolysis activity is intrinsic to the RecD protein itself.  相似文献   

18.
19.
To explore the nature of proposed ligands to the CuA center in cytochrome c oxidase, site-directed mutagenesis has been initiated in subunit II of the enzyme. Mutations were introduced into the mitochondrial gene from the yeast Saccharomyces cerevisiae by high velocity microprojectile bombardment. A variety of single amino acid substitutions at each of the proposed cysteine and histidine ligands (His-161, Cys-196, Cys-200, and His-204 in the bovine numbering scheme), as well as at the conserved Met-207, all result in yeast which fails to grow on ethanol/glycerol medium. Similarly, all possible paired exchange Cys,His and Cys,Met mutants show the same phenotype. Furthermore, protein stability is severely reduced as evidenced by both the absence of an absorbance maximum at 600 nm in the spectra of mutant cells and the underaccumulation of subunit II, as observed by immunolabeling of mitochondrial extracts. In the same area of the protein, a variety of amino acid substitutions at one of the carboxylates previously implicated in binding cytochrome c, Glu-198, allow (reduced) growth on ethanol/glycerol medium, with normal intracellular levels of protein. These results suggest that a precise folding environment of the CuA site within subunit II is essential for assembly or stable accumulation of cytochrome c oxidase in yeast.  相似文献   

20.
Escherichia coli isolates that cause meningitis in newborns are able to invade the circulation and subsequently cross the blood-brain barrier. One mechanism for traversing the blood-brain barrier might involve transcytosis through the endothelial cells. The ability of the meningitis isolate E. coli IHE3034, of serotype 018:K1:H7, to invade epithelial (T24) and endothelial (EA-hy926) cells was investigated by the standard gentamicin survival assay and by electron microscopy. Human bladder epithelial and endothelial cells were efficiently invaded by strain IHE3034, whereas epithelial human colon Caco-2 cells, canine kidney MDCK cells, and the opossum [correction of opposum] epithelial kidney cell line OK were not invaded. The ability to invade human epithelial cells of the bladder could also be demonstrated for several other newborn meningitis E. coli strains and one septicemic E. coli strain. Studies utilizing inhibitors which act on eukaryotic cells revealed a dependence on microfilaments as well as on microtubules in the process of E. coli IHE3034 entry into T24 and EA-hy926 cells. These results indicated that cell cytoskeletal rearrangements are involved in bacterial uptake and suggest that there are either two pathways (microtubule dependent and microfilament dependent) or one complex pathway involving both microtubules and microfilaments. The intracellular IHE3034 organisms were contained in a host-membrane-confined compartment mainly as single microorganisms. Intracellular replication of 1HE3034 was not detected, nor did the number of intracellular bacteria decrease significantly during a 48-h period. The ability of E. coli O18:K1 to invade and survive within certain eukaryotic cells may be another virulence factor of meningitis-associated E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号