共查询到20条相似文献,搜索用时 0 毫秒
1.
4.
入侵检测是数据挖掘的一个重要应用领域,目前基于数据挖掘的入侵检测方法很多,而基于随机森林的方法具有比较好的性能,但仍存在一些问题。通过分析网络入侵数据得到不同输入属性与分类结果的关系,提出了一种基于属性分组的随机森林算法,并应用该算法对KDD’99数据集分类。实验结果表明,该算法的训练速度和分类准确率都比原算法有较大提高。 相似文献
5.
6.
7.
为了提高网络安全水平,及时对网络攻击进行主动检测,提出了一种基于随机森林的网络入侵检测模型。该模型能够对大流量攻击进行分布式检测,且检测算法在引入了两个随机性后,即可降低网络流量内不同属性特征字段的噪声,并消除关联性,以便更为便捷、迅速地对攻击进行主动检测。将经典的Adaboost组合多分类器方法与提出的算法在检测率、正确率、精确率三个方面进行对比,体现了该算法的优越性,为大数据时代下网络安全提供了更好的保护。 相似文献
8.
为了应对大规模网络环境下日益复杂的网络安全威胁,越来越多的研究使用机器学习算法来建立入侵检测模型,其中一些基于随机森林的检测方法具有较好的效果。但传统随机森林中一些分类能力较差的决策树的存在,以及入侵检测数据集的不平衡性,都可能会导致基于传统随机森林的入侵检测模型的性能有所下降。针对这些问题,论文在基于传统随机森林的入侵检测模型上加入了精英选择、加权投票和上采样几种优化方法,并在UNSW-NB15数据集上进行了测试,结果表明优化后的模型具有更好的检测能力。 相似文献
9.
10.
为了提高网络入侵检测的准确率、精确率,降低误报率,提出一种结合随机森林(Random-Forest,RF)的粒子群算法(Particle Swarm Optimization,PSO)优化卷积神经网络(Convolutional Neural Networks,CNN)结构及初始参数算法.该方法结合随机森林理论、PSO的全局寻优特点和CNN提取特征的局部相关性能力.在数据预处理阶段,通过随机森林进行数据特征提取,并作为模型的输入数据.采用粒子群算法优化CNN网络结构,使CNN在非经验指导下自主选择最佳网络结构和初始参数.实验结果表明,该方法在准确率、精确率、误报率方面均优于经典卷积神经网络、粒子群优化反向传播(BP)算法、粒子群优化支持向量机(SVM)算法及目前流行的集成学习方法. 相似文献
11.
为了提高网络入侵检测的准确率、精确率,降低误报率,提出一种结合随机森林(Random-Forest,RF)的粒子群算法(Particle Swarm Optimization,PSO)优化卷积神经网络(Convolutional Neural Networks,CNN)结构及初始参数算法.该方法结合随机森林理论、PSO的全局寻优特点和CNN提取特征的局部相关性能力.在数据预处理阶段,通过随机森林进行数据特征提取,并作为模型的输入数据.采用粒子群算法优化CNN网络结构,使CNN在非经验指导下自主选择最佳网络结构和初始参数.实验结果表明,该方法在准确率、精确率、误报率方面均优于经典卷积神经网络、粒子群优化反向传播(BP)算法、粒子群优化支持向量机(SVM)算法及目前流行的集成学习方法. 相似文献
12.
入侵检测系统中,待测数据通常存在特征数量多、具有冗余性和相关性的特点,导致检测准确率降低、检测时间增加。提出一种基于多层感知机的遗传算法,建立4层感知机神经网络,将网络的分类能力作为遗传算法适应度评价方法,筛选出最优特征子集,建立随机森林分类器,使用网格验证方法确定随机森林超参数值,利用选取出的特征子集进行入侵类型识别。实验结果表明,该方法在KDD99数据集上对正常和22种类别的入侵数据平均检测准确率达到92%以上,并且具有较好的实时性。 相似文献
13.
支持向量机在入侵检测系统中的应用 总被引:1,自引:0,他引:1
为了提高信息系统的安全性,本文将基于统计学习理论的支持向量机方法应用到入侵检测系统中,保证了在先验知识不足的情况下,支持向量机分类器仍有较好的分类正确率,达到了能够对系统异常情况准确预测的目的。该方法避免了基于传统机器学习的局限性,保证了较强的推广能力,从而使整个入侵检测系统具有较好的检测性能。 相似文献
14.
本文结合URL字符串随机率和URL字符特征,通过Wrapper方法筛选出一组新特征。通过对比不同机器学习算法的准确率,回归率等四个不同的指标,确定以随机森林算法构建了基于URL随机率和随机森林的钓鱼网站检测系统。本系统在实验测试集上表现出的准确率为96.49%,在全体实验数据集上表现的准确率为99.19%。实验相关结果表明,方案改进了钓鱼网站检测的准确率。 相似文献
15.
入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型. 相似文献
16.
针对电网系统的故障问题,在Weka语言软件上对随机森林算法为核心的电网故障分析系统模型进行实例分析。同时将随机森林算法与决策树(decision tree)算法、神经网络算法(Neural Network Algorithm, NNA)以及支持向量机(Support Vector Machines, SVM)的预测准确率进行对比,验证随机森林算法的优越性。结果表明,随机森林算法非常适合应用在电网故障分析系统中,在预测准确率方面,故障等级越高预测难度越大,准确率较低,而故障等级越低其故障预测的准确率越高。 相似文献
17.
18.
基于卷积神经网络(CNN)的入侵检测方法在实际应用中模型训练时间过长、超参数较多、数据需求量大。为降低计算复杂度,提高入侵检测效率,提出一种基于集成深度森林(EDF)的检测方法。在分析CNN的隐藏层结构和集成学习的Bagging集成策略的基础上构造随机森林(RF)层,对每层中RF输入随机选择的特征进行训练,拼接输出的类向量和特征向量并向下层传递迭代,持续训练直至模型收敛。在NSL-KDD数据集上的实验结果表明,与CNN算法相比,EDF算法在保证分类准确率的同时,其收敛速度可提升50%以上,证明了EDF算法的高效性和可行性。 相似文献
19.
提出了一种建立入侵检测系统的方法,该方法基于数据挖掘技术,建成后的系统具有可扩展性、自适应性和准确性特点。结合一些网络攻击行为对关联挖掘算法进行了分析,找出符合条件的项集并建立规则库,从而提高入侵检测技术的检测能力。 相似文献
20.
随着计算机和网络在人们生活和工作中的普遍应用,网络环境下数据的传输不断受到攻击和篡改,网络安全已变得越来越重要。网络安全风险防范的要求不断提高,针对目前的入侵检测系统准确度不高、自适应性差、检测效率低等问题,该文基于决策树分类算法,设计了一个基于决策树的入侵检测系统模型,将决策树算法作为分类器应用于入侵检测的过程中,提高了入侵检测系统的性能。 相似文献