首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Creep properties of lead-free Sn-3.5Ag-based alloys with varying amounts of Cu or Bi were studied by single lap-shear test. Solder balls with five different compositions of Cu (0 wt.%, 0.75 wt.%, 1.5 wt.%) and Bi (2.5 wt.%, 7.5 wt.%) were reflowed on Cu. The Cu-containing alloy had a lower creep rate than the Bi-containing alloy. The Sn-3.5Ag alloy showed the lowest creep rate on Cu, implying that the Cu element already dissolved in the Sn-3.5Ag alloy during reflow. The Cu-containing alloy was strengthened by dispersed small precipitates of Cu6Sn5. As the Cu content increased up to 1.5 wt.%, the Cu6Sn5 coarsened and platelike Ag3Sn intermetallics were found, which deteriorated the creep resistance.  相似文献   

2.
The creep deformation behavior of eutectic Sn-3.5Ag based Ni particle rein forced composite solder joints was investigated. The Ni particle reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. Static-loading creep tests were carried out on solder joint specimens at 25 C, 65 C, and 105 C, representing homologous temperatures ranging from 0.6 to 0.78. A novel-design, miniature creep-testing frame was utilized in this study. Various creep parameters such as the global and localized creep strain, steady-state creep rate, onset of tertiary creep and the activation energy for creep were quantified by mapping the distorted laser ablation pattern imprinted on the solder joint prior to testing. The Ni-reinforced composite solder joint showed improved creep resistance compared to the results previously reported for eutectic Sn-3.5Ag solder, Sn-4.0Ag-0.5Cu solder alloys, and for eutectic Sn-3.5Ag solder reinforced with Cu or Ag particle reinforcements. The activation energy for creep was ∼0.52 eV for Sn-3.5Ag and Sn-4Ag-0.5Cu solder alloys. The activation energies ranged from 0.55–0.64 eV for Cu, Ag, and Ni reinforced composite solder joints, respectively. Most often, creep fracture occurred closer to one side of the solder joint within the solder matrix.  相似文献   

3.
In this study, we investigated the effect of the current density on the interfacial reaction and mechanical reliability of an electroless Ni/immersion Au (ENIG) substrate with Sn-3.5Ag solder. We first evaluated the interfacial reactions of the solder joint under aging for up to 800 h and current stressing with current densities of 3 × 102 A/cm2 and 5 × 103 A/cm2. Also, we successfully revealed the correlation between the interfacial reaction behavior and mechanical reliability under current stressing. With increasing aging time, the thickness of the Ni3Sn4 layer increased. At both low and high current densities, the thickness of the Ni3Sn4 layer increased up to 400 h and decreased thereafter at the cathode, while that of the IMC increased up to 800 h at the anode. After the die shear test, the ductile fracture was observed in the as-reflowed joint without current stressing. The fracture mode changed from ductile fracture to brittle fracture when thermal aging and current flow were simultaneously applied. The combination of the current stressing and isothermal aging at high temperature significantly deteriorated the mechanical reliability of the solder joint.  相似文献   

4.
The shear deformation behavior of two lead-free solder compositions, Sn-3.5Ag (wt.%) and Sn-3.6Ag-1.0Cu (wt.%), both on copper substrates, was studied using an asymmetric four point bend technique. Four test joints were obtained from one master specimen of each composition, and each joint was subject to progressive loading, up to the maximum shear strength of the joint. One unstressed bar from each composition was retained as a reference. Each sample was metallo-graphically plished and lightly etched, and examined in a field emission scanning electron microscope (SEM) before shearing. Sheared joints were then re-examined in the SEM with no additional surface treatment. Compared with the traditional ring and plug method, the asymmetric four-point bend (AFPB) technique subjects the joints to a condition of pure shear, while providing an opportunity for unambiguous observation of microstructural features before and after shearing, without an intervening mechanical sectioning step. Shear banding in the Sn-rich matrix and crack nucleation in the vicinity of the intermetallic interface were observed at low displacements in the binary alloy. Evidence of non-homogeneous plastic flow in the matrix was seen at higher shear loading. No evidence of brittle fracture was observed in the Sn-3.6Ag-1.0 Cu alloy, with elastic deformation at low stress levels giving rise to plastic deformation at higher loading values. Results show that the AFPB technique is a viable approach to the study of shear loading on solder joints.  相似文献   

5.
The effects of substrate surface roughness, joint thickness, time above liquidus, and testing temperature on the chevron notch fracture toughness of Cu/96.5Sn-3.5Ag solder joints are investigated. Of these four variables,only the surface roughness of the copper surfaces to be soldered has a significant effect. A minimum fracture toughness is obtained when the average surface roughness, Ra, is between 0.2 and 1.0 μm. This encompasses the surface roughnesses produced by many cold forming operations. Decreasing the roughness to 0.04 μm increases the fracture toughness from 4.7 to 11.0 MPa√m, an improvement of 135%. Increasing the roughness to 2.0 μm increases the fracture toughness to 8.8 MPa√m, an improvement of 80%. We attribute these effects to the increased growth stresses that develop in the brittle intermetallic layer when the size scale of individual intermetallic particles is comparable to the size of the roughness features of the substrate. Two models that describe how these growth stresses might develop are provided.  相似文献   

6.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

7.
The Sn3.5Ag0.75Cu (SAC) solder joint reliability under thermal cycling was investigated by experiment and finite element method (FEM) analysis. SAC solder balls were reflowed on three Au metallization thicknesses, which are 0.1, 0.9, and 4.0 μm, respectively, by laser soldering. Little Cu–Ni–Au–Sn intermetallic compound (IMC) was formed at the interface of solder joints with 0.1 μm Au metallization even after 1000 thermal cycles. The morphology of AuSn4 IMC with a small amount of Ni and Cu changed gradually from needle- to chunky-type for the solder joints with 0.9 μm Au metallization during thermal cycling. For solder joints with 4 μm Au metallization, the interfacial morphology between AuSn4 and solder bulk became smoother, and AuSn4 grew at the expense of AuSn and AuSn2. The cracks mainly occurred through solder near the interface of solder/IMC on the component side for solder joints with 0.1 μm Au metallization after thermal shock, and the failure was characterized by intergranular cracking. The cracks of solder joints with 0.9 μm Au metallization were also observed at the same location, but the crack was not so significant. Only micro-cracks were found on the AuSn4 IMC surface for solder joints with 4.0 μm Au metallization. The responses of stress and strain were investigated with nonlinear FEM, and the results correlated well with the experimental results.  相似文献   

8.
During the reflow process of Sn-3.5Ag solder ball grid array (BGA) packages with Ag/Cu and Au/Ni/Cu pads, Ag and Au thin films dissolve rapidly into the liquid solder, and the Cu and Ni layers react with the Sn-3.5Ag solder to form Cu6Sn5 and Ni3Sn4 intermetallic compounds at the solder/pad interfaces, respectively. The Cu6Sn5 intermetallic compounds also appear as clusters in the solder matrix of Ag surface-finished packages accompanied by Ag3Sn dispersions. In the solder matrix of Au/Ni surface-finished specimens, Ag3Sn and AuSn4 intermetallics can be observed, and their coarsening coincides progressively with the aging process. The interfacial Cu6Sn5 and Ni3Sn4 intermetallic layers grow by a diffusion-controlled mechanism after aging at 100 and 150°C. Ball shear strengths of the reflowed Sn-3.5Ag packages with both surface finishes are similar, displaying the same degradation tendencies as a result of the aging effect.  相似文献   

9.
Composite solders offer improved properties compared to non-composite solders. Ni reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. The average size of the Ni particle reinforcements was approximately 5 microns. The morphology, size and distribution of the reinforcing phase were characterized metallographically. Solid-state isothermal aging study was performed on small realistic size solder joints to study the formation and growth of the intermetallic (IM) layers at Ni reinforcement/solder and Cu substrate/solder interfaces. Effects of reflow on microstructure and solderability, were studied using Cu substrates. Regarding solderability, the wetting angle of multiple reflowed Ni reinforced composite solder was compared to the solder matrix alloy, eutectic Sn-3.5Ag. General findings of this study revealed that Ni particle reinforced composite solder has comparable wetting characteristics to eutectic Sn-3.5Ag solder. Significant IM layers growth was observed in the Ni composite solder joint under isothermal aging at 150 C. Microstructural evolution was insignificant when aging temperature was lower than 100 C. Multiple reflow did not significantly change the microstructure in Ni composite solder joint.  相似文献   

10.
Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ∼100 μm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.  相似文献   

11.
Electroless Ni-P layers with three different P contents (6.1 wt.%, 8.8 wt.%, and 12.3wt.%) were deposited on copper (Cu) substrates. Multilayered samples of Sn-3.5Ag/Ni-P/Cu stack were prepared and subjected to multiple reflows at 250°C. A tensile test was performed to investigate the effect of P content on the solder joint strength. The low P samples exhibited the highest joint strength after multiple reflows, while the strength of medium and high P samples decreased more rapidly. From interfacial analysis, the Ni3Sn4 intermetallic compound (IMC) formed at the interface of low P sample was found to be more stable, while the one of medium and high P samples spalled into the molten solder. The IMC spallation sped up the consumption of electroless Ni-P, leading to the large formation of Cu-Sn IMCs. Fractographic and microstructural analyses showed that the degradation in solder joint strength was due to the formation of layers of voids and growth of Cu-Sn IMCs between the solder and the Cu substrate.  相似文献   

12.
An improved Anand constitutive model is proposed to describe the inelastic deformation of lead-free solder Sn-3.5Ag used in solder joints of microelectronic packaging. The new model accurately predicted the overall trend of steady-state stress-strain behavior of the solder for the temperature range from 233 K to 398 K and the strain rate range from 0.005 s/sup -1/ to 0.1 s/sup -1/. h/sub 0,/ a constant in the original Anand model, was set to a function of temperature and strain rate in the proposed model. Comparison of the experimental results and simulated results verified that the improved Anand model with modifying h/sub 0/ to a function reasonably simulated the inelastic stress-strain relationships.  相似文献   

13.
《Microelectronics Reliability》2015,55(11):2391-2395
In this paper, vibration tests are conducted to investigate the influence of temperature on PCB responses. A set of combined tests of temperature and vibration is designed to evaluate solder interconnect reliability at 25 °C, 65 °C and 105 °C. Results indicate that temperature significantly affects PCB responses, which leads to remarkable differences in vibration loading intensity. The PCB eigenfrequency shifts from 290 Hz to 276 Hz with an increase of test temperature from 25 °C to 105 °C, during which the peak strain amplitude is almost the same.Vibration reliability of solder interconnects is greatly improved with temperature rise from 25 °C to 105 °C. Mean time to failure (MTTF) of solder joint at 65 °C and 105 °C is increased by 70% and 174% respectively compared to that of solder joint at 25 °C. Temperature dominates crack propagation path of solder joint during vibration test. Crack propagation path is changed from the area between intermetallic compound (IMC) layer and Cu pad to the bulk solder with temperature increase.  相似文献   

14.
In this study, time-temperature-dependent nonlinear analyses of lead-free solder bumped wafer level chip scale package (WLCSP) on microvia buildup printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. The lead-free solder considered is 96.5Sn-3.5Ag. The 62Sn-2Ag-36Pb solder is also considered to establish a baseline. These two solder alloys are assumed to obey the Garofalo-Arrhenius steady-state creep constitutive law. The shear stress and shear creep strain hysteresis loops, shear stress history, shear creep strain history, and creep strain density range at the corner solder joint are presented for a better understanding of the thermal-mechanical behavior of the lead-free solder bumped WLCSP on microvia buildup PCB assemblies  相似文献   

15.
In this study, the approach of composite solder using eutectic Sn-3.5Ag solder and Co was tried. Co particles and Sn-3.5Ag solder paste were mechanically mixed at Co weight fractions from 0.1% to 2.0%. For the Co-mixed Sn-3.5Ag solder pastes, their melting temperatures and spreading areas were measured. The solder pastes were stencil printed on test substrates and reflowed to form solder bumps. Ball shear test was performed to examine shear strength of Co-reinforced Sn-3.5Ag solder bumps. As a result, Co addition up to 2 wt.% did not alter the melting temperature under heating but reduced undercooling. The maximum shear strength of Co-reinforced Sn-3.5Ag solder bumps increased by 28% compared to normal ones. The increase in shear strength can be attributed to the (Cu,Co)3Sn2 intermetallic compounds.  相似文献   

16.
Temperature cycling of a test board with different electronic components was carried out at two different temperature profiles in a single-chamber climate cabinet. The first temperature profile ranged between −55 and 100 °C and the second between 0 and 100 °C. Hole mounted components and secondary side SMD components were wave soldered with an Sn–3.5Ag alloy. Joints of both dual in line (DIL) packages and ceramic chip capacitors were investigated. Crack initiation and propagation was analysed after every 500 cycles. In total, 6500 cycles were run at both temperature profiles and the observations from each profile were compared.For both kinds of components analysed, cracks were first visible for the temperature profile ranging between −55 and 100 °C. For this temperature profile, and for DIL packages, cracks were visible already after 500 cycles, whereas for the other temperature profile, cracks initiated between 1000 and 1500 cycles. The cracks observed after 1500 cycles were visibly smaller for the temperature profile ranging between 0 and 100 °C, concluding that crack initiation and propagation was slightly slower for this temperature profile. For the chip capacitors, cracks were first visible after 2000 cycles.  相似文献   

17.
A ZrO2 nanoparticle strengthened lead-free Sn-3,5Ag-ZrO2 solder was prepared by mechanically stirring ZrO2 nanoparticles into the molten melt of eutectic Sn-3.5Ag alloy. The influence of ZrO2 nanoparticles on the eutectic solidification process, in particular, the formation of Ag3Sn intermetallic compounds (IMCs) and the associated microstructure that forms and microhardness of Sn-3.5Ag solder, was systematically investigated. The addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn IMCs due to the strong adsorption effect of the ZrO2 nanoparticles. The refined Ag3Sn IMCs increase the Vicker’s microhardness of the prepared Sn-3.5Ag-ZrO2 solder, which corresponds well with the prediction of the classic theory of dispersion strengthening.  相似文献   

18.
Formation of intermetallic compounds (IMCs) in solder joints is closely associated with the mechanical reliability of the system. Though internal voids formed in Ni/Sn solder joints are known to be related to the formation of Ni3Sn4 IMC, a detailed study on the mechanical reliability has not yet been reported. In this study, the mechanical reliability of Ni/Sn joints was investigated using two different soldering systems: Ni/Ag-Ag/Sn/Ni bilayers and Ni/Sn/Ag-Ag/Sn/Ni sandwich structures. The failure mode was found to be closely related to the formation and growth of an Ag3Sn phase. Filling of the voids with Ag3Sn IMC resulted in maximum shear strength, with a failure locus through Ni3Sn4 and Ag3Sn. However, formation of a large amount of Ag3Sn decreased the shear strength once again.  相似文献   

19.
The evolution of intermetallic compounds (IMCs) generated between Sn-3.5Ag solder doped by additive couples (namely, 0.2mass%Co and 0.1mass%Ni) and Cu substrate was characterized. After soldering, the additive couples, Co-Ni, were all detected at the intermetallic region. The microstructure of intermetallic was identified as (Cu, Ni, Co)6Sn5 by electron probe microanalysis (EPMA) and x-ray diffraction (XRD). However, the morphology of (Cu, Ni, Co)6Sn5 was converted to columnar like and was not as dense as the typical scallop-like Cu6Sn5. A duplex structure of (Cu, Ni, Co)6Sn5, namely, two distinct regions bearing different concentrations of Ni and Co, was observed. Much higher Ni and Co concentrations were probed in the outer intermetallic region adjacent to the solder matrix, while lower concentration at the inner region was verified. After aging, the intermetallic (Cu, Ni, Co)6Sn5 tended to be dense, while the growth rate was depressed at the early stage. In addition, the Cu3Sn phase was not detected after aging at 110°C, while it appeared at 130°C and 150°C for 504 h. Using the nanoindentation technique, some mechanical properties of (Cu, Ni, Co)6Sn5 were investigated. The lower hardness and Young’s modulus of the outer intermetallic region was revealed. After aging treatment, both the hardness and Young’s modulus values were elevated.  相似文献   

20.
《Microelectronics Reliability》2015,55(11):2396-2402
The microstructures and crack propagation behavior of CCGA (ceramic column grid array) solder joints after sinusoidal vibration loading, random vibration loading, and thermal cycling test have been discussed in this study. The failure mechanism of solder joints was analyzed using an experimental method and finite element analysis. It was found that the failed solder joints mainly distributed at the peripheral area in the solder column arrays and the crack initiation was mainly caused by mechanical vibrations. The deformation of PCB (printed circuit board) introduced by mechanical vibrations brought the outermost solder columns in CCGA devices with significant stress concentration and induced the initiation of cracks. Furthermore, cracks propagated during the process of mechanical vibrations and thermal cycling. The cracks propagated rapidly and the solder joints finally failed. The structure of the PCB holder was improved to relieve the vibration response from the peripheral joints. No visible crack was found in the solder joints after the same mechanical vibrations and thermal cycling test. The reliability of solder joints have been greatly improved with the new PCB holder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号