首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce simple qubit-encodings and logic gates which eliminate the need for certain difficult single-qubit operations in superconducting phase-qubits, while preserving universality. The simplest encoding uses two physical qubits per logical qubit. Two architectures for its implementation are proposed: one employing N physical qubits out of which N/2 are ancillas fixed in the |1 state, the other employing N/2+1 physical qubits, one of which is a bus qubit connected to all others. Details of a minimal set of universal encoded logic operations are given, together with recoupling schemes, that require nanosecond pulses. A generalization to codes with higher ratio of number of logical qubits per physical qubits is presented. Compatible decoherence and noise suppression strategies are also discussed. PACS: 03.67.Lx; 85.25.Hv; 03.67.-a; 89.70.+c  相似文献   

2.
The spins of localized electrons in silicon are strong candidates for quantum information processing because of their extremely long coherence times and the integrability of Si within the present microelectronics infrastructure. This paper reviews a strategy for fabricating single electron spin qubits in gated quantum dots in Si/SiGe heterostructures. We discuss the pros and cons of using silicon, present recent advances, and outline challenges. PACS: 03.67.Pp, 03.67.Lx, 85.35.Be, 73.21.La  相似文献   

3.
Controlling Spin Qubits in Quantum Dots   总被引:1,自引:0,他引:1  
We review progress on the spintronics proposal for quantum computing where the quantum bits (qubits) are implemented with electron spins. We calculate the exchange interaction of coupled quantum dots and present experiments, where the exchange coupling is measured via transport. Then, experiments on single spins on dots are described, where long spin relaxation times, on the order of a millisecond, are observed. We consider spin-orbit interaction as sources of spin decoherence and find theoretically that also long decoherence times are expected. Further, we describe the concept of spin filtering using quantum dots and show data of successful experiments. We also show an implementation of a read out scheme for spin qubits and define how qubits can be measured with high precision. Then, we propose new experiments, where the spin decoherence time and the Rabi oscillations of single electrons can be measured via charge transport through quantum dots. Finally, all these achievements have promising applications both in conventional and quantum information processing. PACS: 03.67.Lx, 03.67.Mn, 73.23.Hk, 85.35.Be  相似文献   

4.
We present geometric methods for uniformly discretizing the continuous N-qubit Hilbert space HN. When considered as the vertices of a geometrical figure, the resulting states form the equivalent of a Platonic solid. The discretization technique inherently describes a class of /2 rotations that connect neighboring states in the set, i.e., that leave the geometrical figures invariant. These rotations are shown to generate the Clifford group, a general group of discrete transformations on N qubits. Discretizing HN allows us to define its digital quantum information content, and we show that this information content grows as N2. While we believe the discrete sets are interesting because they allow extra-classical behavior—such as quantum entanglement and quantum parallelism—to be explored while circumventing the continuity of Hilbert space, we also show how they may be a useful tool for problems in traditional quantum computation. We describe in detail the discrete sets for one and two qubits.PACS: 03.67.Lx; 03.67.pp; 03.67.-a; 03.67.Mn.PACS: 03.67.Lx; 03.67.pp; 03.67.-a; 03.67.Mn.  相似文献   

5.
A system of interacting qubits can be viewed as a non-i.i.d quantum information source. A possible model of such a source is provided by a quantum spin system, in which spin-1/2 particles located at sites of a lattice interact with each other. We establish the limit for the compression of information from such a source and show that asymptotically it is given by the von Neumann entropy rate. Our result can be viewed as a quantum ana-logue of Shannon's noiseless coding theorem for a class of non-i.i.d. quantum informa-tion sources. From the probabilistic point of view it is an analog of the Shannon-McMillan-Breiman theorem considered as a cornerstone of modern Information Theory. PACS: 03.67-a; 03.67.Lx  相似文献   

6.
We present Monte Carlo wavefunction simulations for quantum computations employing an exchange-coupled array of quantum dots. Employing a combination of experimentally and theoretically available parameters, we find that gate fidelities greater than 98% may be obtained with current experimental and technological capabilities. Application to an encoded 3 qubit (nine physical qubits) Deutsch-Josza computation indicates that the algorithmic fidelity is more a question of the total time to implement the gates than of the physical complexity of those gates. PACS: 81.07.Ta, 02.70.Ss, 03.67.Lx, 03.65.Yz  相似文献   

7.
We discuss the basic aspects of quantum information processing with trapped ions, including the principles of ion trapping, preparation and detection of hyperfine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent experimental advances and future research directions are outlined. PACS: 03.67.Lx, 32.80.Pj, 32.80.Qk, 42.50.Vk  相似文献   

8.
9.
Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it. PACS: 03.67.-a, 03.65.Yz, 85.25.-j, 85.35.Gv  相似文献   

10.
11.
Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and the vectors modeling qubit states grow exponentially with an increase in the number of qubits. However, by using a novel data structure called the Quantum Information Decision Diagram (QuIDD) that exploits the structure of quantum operators, a useful subset of operator matrices and state vectors can be represented in a form that grows polynomially with the number of qubits. This subset contains, but is not limited to, any equal superposition of n qubits, any computational basis state, n-qubit Pauli matrices, and n-qubit Hadamard matrices. It does not, however, contain the discrete Fourier transform (employed in Shor's algorithm) and some oracles used in Grover's algorithm. We first introduce and motivate decision diagrams and QuIDDs. We then analyze the runtime and memory complexity of QuIDD operations. Finally, we empirically validate QuIDD-based simulation by means of a general-purpose quantum computing simulator QuIDDPro implemented in C++. We simulate various instances of Grover's algorithm with QuIDDPro, and the results demonstrate that QuIDDs asymptotically outperform all other known simulation techniques. Our simulations also show that well-known worst-case instances of classical searching can be circumvented in many specific cases by data compression techniques. PACS: 03.67.Lx, 03.65.Fd, 03.65.Vd, 07.05.Bx  相似文献   

12.
Hsieh  M.  Kempe  J.  Myrgren  S.  Whaley  K. B. 《Quantum Information Processing》2003,2(4):289-307
A single physical interaction might not be universal for quantum computation in general. It has been shown, however, that in some cases it can achieve universal quantum computation over a subspace. For example, by encoding logical qubits into arrays of multiple physical qubits, a single isotropic or anisotropic exchange interaction can generate a universal logical gate-set. Recently, encoded universality for the exchange interaction was explicitly demonstrated on three-qubit arrays, the smallest nontrivial encoding. We now present the exact specification of a discrete universal logical gate-set on four-qubit arrays. We show how to implement the single qubit operations exactly with at most 3 nearest neighbor exchange operations and how to generate the encoded controlled-NOT with 27 parallel nearest neighbor exchange interactions or 50 serial gates, obtained from extensive numerical optimization using genetic algorithms and Nelder–Mead searches. We also give gate-switching times for the three-qubit encoding to much higher accuracy than previously and provide the full speci.cation for exact CNOT for this encoding. Our gate-sequences are immediately applicable to implementations of quantum circuits with the exchange interaction. PACS: 03.67.Lx, 03.65.Ta, 03.65.Fd, 89.70.+c  相似文献   

13.
Identifying the Bloch sphere with the Riemann sphere (the extended complex plane), we obtain relations between single qubit unitary operations and Möbius transformations on the extended complex plane. PACS: 03.67.-a, 03.67.Lx, 03.67.Hk  相似文献   

14.
We prove that majorization relations hold step by step in the Quantum Fourier Transformation (QFT) for phase-estimation algorithms. Our result relies on the fact that states which are mixed by Hadamard operators at any stage of the computation only differ by a phase. This property is a consequence of the structure of the initial state and of the QFT, based on controlled-phase operators and a single action of a Hadamard gate per qubit. The detail of our proof shows that Hadamard gates sort the probability distribution associated to the quantum state, whereas controlled-phase operators carry all the entanglement but are immaterial to majorization. We also prove that majorization in phase-estimation algorithms follows in a most natural way from unitary evolution, unlike its counterpart in Grover's algorithm. PACS: 03.67.-a, 03.67.Lx  相似文献   

15.
We investigate the performance of a quantum error-correcting code when pushed beyond its intended capacity to protect against errors, presenting formulae for the probability of failure when the errors affect more qudits than that specified by the code’s minimum distance. Such formulae provide a means to rank different codes of the same minimum distance. We consider both error detection and error correction, treating explicit examples in the case of stabilizer codes constructed from qubits and encoding a single qubit Pacs: 03.67.Pp  相似文献   

16.
The errors that arise in a quantum channel can be corrected perfectly if and only if the channel does not decrease the coherent information of the input state. We show that, if the loss of coherent information is small, then approximate quantum error correction is possible. PACS: 03.67.H, 03.65.U  相似文献   

17.
Progress in Quantum Algorithms   总被引:2,自引:0,他引:2  
We discuss the progress (or lack of it) that has been made in discovering algorithms for computation on a quantum computer. Some possible reasons are given for the paucity of quantum algorithms so far discovered, and a short survey is given of the state of the field. PACS: 03.67.Lx  相似文献   

18.
The effect of noise on a quantum system can be described by a set of operators obtained from the interaction Hamiltonian. Recently it has been shown that generalized quantum error correcting codes can be derived by studying the algebra of this set of operators. This led to the discovery of noiseless subsystems. They are described by a set of operators obtained from the commutant of the noise generators. In this paper we derive a general method to compute the structure of this commutant in the case of unital noise. PACS: 03.67.–a, 03.67.Pp  相似文献   

19.
The scheme of an ion trap quantum computer is described and the implementation of quantum gate operations with trapped Ca+ ions is discussed. Quantum information processing with Ca+ ions is exemplified with several recent experiments investigating entanglement of ions. PACS: 03.67.Lx, 03.67.Mn, 32.80.Pj  相似文献   

20.
In this note, we discuss a general definition of quantum random walks on graphs and illustrate with a simple graph the possibility of very different behavior between a classical random walk and its quantum analog. In this graph, propagation between a particular pair of nodes is exponentially faster in the quantum case. PACS: 03.67.Hk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号