首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the implementation of a short‐tip tapping‐mode tuning fork near‐field scanning optical microscope. Tapping frequency dependences of the piezoelectric signal amplitudes for a bare tuning fork fixed on the ceramic plate, a short‐tip tapping‐mode tuning fork scheme and an ordinary tapping‐mode tuning fork configuration with an 80‐cm optical fibre attached are demonstrated and compared. Our experimental results show that this new short‐tip tapping‐mode tuning fork scheme provides a stable and high Q factor at the tapping frequency of the tuning fork and will be very helpful when long optical fibre probes have to be used in an experiment. Both collection and excitation modes of short‐tip tapping‐mode tuning fork near‐field scanning optical microscope are applied to study the near‐field optical properties of a single‐mode telecommunication optical fibre and a green InGaN/GaN multiquantum well light‐emitting diode.  相似文献   

2.
This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 μm/s—a threefold improvement in bandwidth versus conventional piezotube actuators.  相似文献   

3.
The fabrication of silicon cantilever‐based scanning near‐field optical microscope probes with fully aluminium‐coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic‐ and contact‐mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone‐angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near‐field optical images of individual fluorescing molecules showed a resolution < 100 nm. Scanning electron microscopy images of tips before and after scanning near‐field optical microscope imaging, and transmission electron microscopy analysis of tips before and after illumination, together with measurements performed with a miniaturized thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.  相似文献   

4.
We present a method for combined far‐field Raman imaging, topography analysis and near‐field spectroscopy. Surface‐enhanced Raman spectra of Rhodamine 6G (R6G) deposited on silver nanoparticles were recorded using a bent fibre aperture‐type near‐field scanning optical microscope (NSOM) operated in illumination mode. Special measures were taken to enable optical normal‐force detection for control of the tip–sample distance. Comparisons between far‐field Raman images of R6G‐covered Ag particle aggregates with topographic images recorded using atomic force microscopy (AFM) indicate saturation effects due to resonance excitation.  相似文献   

5.
We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy.  相似文献   

6.
A nonoptical detection of the optical fibre tip has been developed. By detecting the output signal from a tiny piezoelectric detector attached to the vibrating fibre tip, the distance between the fibre tip and the sample has been successfully controlled. The frequency responses of the system composed of tip, the dither and the detector have been studied. The difference between the shear-force detection and the tapping-mode detection is discussed. It is found that the shear force exerted on the tip reduces the vibration amplitude with an unvaried resonance frequency. However, in the tapping mode, the resonance frequency varies with the tip–sample distance as the force is exerted on the fibre tip only within a half period. This requires better adjustments for the tapping-mode detection.  相似文献   

7.
Wang K  Wang X  Jin N  Huang W  Xu J 《Journal of microscopy》1999,194(PT 2-3):317-320
A nonoptical detection of the optical fibre tip has been developed. By detecting the output signal from a tiny piezoelectric detector attached to the vibrating fibre tip, the distance between the fibre tip and the sample has been successfully controlled. The frequency responses of the system composed of tip, the dither and the detector have been studied. The difference between the shear-force detection and the tapping-mode detection is discussed. It is found that the shear force exerted on the tip reduces the vibration amplitude with an unvaried resonance frequency. However, in the tapping mode, the resonance frequency varies with the tip-sample distance as the force is exerted on the fibre tip only within a half period. This requires better adjustments for the tapping-mode detection.  相似文献   

8.
A combined scanning near field optical/atomic force microscope (AFM) is used to obtain surface force measurements between a near field sensing tip and a tapered optical fibre surface, whilst simultaneously detecting the intensity of the evanescent field emanating from the fibre. The tapered optical fibre acts as a compliant sample to demonstrate the possible use of the near field intensity measurement system in determining 'real' surface separations from normal AFM surface force measurements at sub-nanometer resolution between deformable surfaces.  相似文献   

9.
10.
A combined scanning probe microscope has been developed that allows simultaneous operation as a non‐contact/tapping mode atomic force microscope, a scattering near‐field optical microscope, and a scanning tunnelling microscope on conductive samples. The instrument is based on a commercial optical microscope. It operates with etched tungsten tips and exploits a tuning fork detection system for tip/sample distance control. The system has been tested on a p‐doped silicon substrate with aluminium depositions, being able to discriminate the two materials by the electrical and optical images with a lateral resolution of 130 nm.  相似文献   

11.
The objective of this work is to fabricate a scanning probe sensor that combines the well-established method for atomic force microscopy, employing a micro-machined Si cantilever and integrated tip, with a probe for the optical near field. A photosensitive pn-junction is integrated into the tip for that purpose and an Al coating is applied to the tip. It comprises an aperture of 50-70 nm in diameter at the apex of the tip in order to spatially limit the interaction of the tip to the optical near field of the sample. Characterization of the tip and first results of simultaneously recorded force and photon images are presented.  相似文献   

12.
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip‐sample separations, and for different tip‐sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer‐generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. Microsc. Res. Tech. 78:935–946, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
An original scanning near‐field cathodoluminescence microscope for nanostructure characterization has been developed and successfully tested. By using a bimorph piezoelectric stack both as actuator and detector, the developed setup constitutes a real improvement compared to previously reported SEM‐based solutions. The technique combines a scanning probe and a scanning electron microscope in order to simultaneously offer near‐field cathodoluminescence and topographic images of the sample. Share‐force topography and cathodoluminescence measurements on GaN, SiC and ZnO nanostructures using the developed setup are presented showing a nanometric resolution in both topography and cathodoluminescence images with increased sensitivity compared to classical luminescence techniques.  相似文献   

14.
Su C  Huang L  Kjoller K 《Ultramicroscopy》2004,100(3-4):233-239
An experimental set up dedicated to the measurement of atomic force microscope tapping force was developed. In the set-up, a standard TappingMode™ probe cantilever was used to tap another cantilever equipped with its own low noise and high sensitivity deflection detection system for force measurement. The amplitude and phase change of the tapping lever as well as the deflection of the sensing lever were simultaneously recorded as a function of tip/surface separation. Since the deflection of the sensing cantilever reflects the average force over one interaction cycle, we measured the total average force quantitatively after calibrating the spring constant and deflection sensitivity of the sensing lever. Considerable effort was made to achieve the same force curve in the tapping force measurement as occur during imaging of conventional samples such that the detected tapping force reflects the same interaction of the imaging process.  相似文献   

15.
Plasmon-coupled tip-enhanced near-field optical microscopy   总被引:3,自引:0,他引:3  
Near the cut‐off radius of a guided waveguide mode of a metal‐coated glass fibre tip it is possible to couple radiation to surface plasmons propagating on the outside surface of the metal coating. These surface plasmons converge toward the apex of the tip and interfere constructively for particular polarization states of the initial waveguide mode. Calculations show that a radially polarized waveguide mode can create a strong field enhancement localized at the apex of the tip. The highly localized enhanced field forms a nanoscale optical near‐field source.  相似文献   

16.
压电双晶片的有限元分析及实验   总被引:4,自引:0,他引:4  
采用有限元分析方法,分析了压电双晶片悬臂梁的位移形变特征.研究了金属弹性层、压电陶瓷片的材料属性及几何尺寸对双晶片偏转位移的影响;计算了双晶片的弹性模量、厚度以及加载电压与位移形变产生弯应力的关系;通过位移测试、弯应力测试等相关实验对有限元分析进行了验证.当加载电压为60 V(120 Vp-p)时,双晶片的偏转位移和弯应力分别为166/μm和34.7 m·N,实验结果证明本文所建的有限元模型是合理有效的.此外,测试了压电双晶片的振动特性,测得其谐振频率为310 Hz,在该频率下加载20 Vp-p电压,其端部位移输出即可达1.7 mm.有限元分析结果及实验验证为压电双晶片结构的优化设计提供了依据.  相似文献   

17.
A piezoresistive micro cantilever is applied to monitor the displacement of an optical fibre probe and to control tip–sample distance. The piezoresistive cantilever was originally made for a self-sensitive atomic force microscopy (AFM) probe and has dimensions of 400 µm length, 50 µm width and 5 µm thickness with a resistive strain sensor at the bottom of the cantilever. We attach the piezoresistive cantilever tip to the upper side of a vibrating bent optical fibre probe and monitor the resistance change amplitude of the strain sensor caused by the optical fibre displacement. By using this resistance change to control the tip–sample distance, the two-cantilever system successfully provides topographic and near-field optical images of standard samples in a scanning near-field optical microscopy (SNOM)/AFM system. A resonant characteristic of the two-cantilever system is also simulated using a mechanical model, and the results of simulation correspond to the experimental results of resonance characteristics.  相似文献   

18.
Scanning near-field optical microscopy of a cell membrane in liquid   总被引:1,自引:0,他引:1  
The applications of scanning near‐field optical microscopy to biological specimens under physiological conditions have so far been very rare since common techniques for a probe–sample distance control are not as well suited for operation in liquid as under ambient conditions. We have shown previously that our own approach for a distance control, based on a short aperture fibre probe and a tuning fork as force sensor in a tapping mode, works well even on soft material in water. By means of an electronic self‐excitation circuit, which compensates for changes of the resonance frequency due to evaporation of liquid, the stability of the force feedback has now been further improved. We present further evidence for the excellent suitability of the tapping‐mode‐like distance control to an operation in liquid, for example, by force‐imaging of double‐stranded DNA. Moreover, we demonstrate that a nuclear envelope in liquid can be imaged with a high optical resolution of ~70 nm without affecting its structural integrity. Thereby, single nuclear pores in the nuclear envelope with a nearest neighbour distance of ~120 nm have been optically resolved for the first time.  相似文献   

19.
刘祥建 《机电工程》2014,(6):775-778
针对双晶压电悬臂梁发电装置机电两类能量通过压电效应耦合强弱的问题,将能量法应用到双晶压电悬臂梁发电装置机电耦合系数的分析中。开展了双晶压电悬臂梁发电装置机电耦合系数的理论分析,并建立了其与双晶压电悬臂梁发电装置尺寸参数和材料特性之间的关系,对双晶压电悬臂梁发电装置机电耦合系数与其尺寸参数和材料特性的关系模型进行了实验验证和数值模拟。研究结果表明,实验值与理论解有较好的一致性,且都在压电片厚度为0.25 mm时开路电压最大,验证了该理论模型的可靠性。此外,随着压电梁厚度比的不断增大,其机电耦合系数单调递增;同时,较大的弹性模量比有利于压电梁机电耦合系数的提高,且相对于钢弹性基片,铍青铜弹性基片更有利于压电梁机电耦合系数的提高。  相似文献   

20.
This article deals with the modeling and simulation of the vibration behavior of piezoelectric micro‐cantilever (MC) based on the Timoshenko theory and using multi‐scale (MTS) method in the air environment. In this regard, the results are compared with the previous literature, such as the finite element method and the MTS method. The analysis of the piezoelectric MC vibrating behavior is investigated in a dynamical mode including non‐contact and tapping modes. The dynamics of this system is affected by interferential forces between probe tip and sample surface, such as van der Waals, capillary, and contact forces. According to the results, the forces applied to the probe tip reduce the amplitude and the resonance frequency. The simulation of surface topography in non‐contact mode and tapping for rectangular and wedge‐shaped roughness in the air environment are presented. Various experiments have been conducted in Ara research Company using the atomic force microscopy device in the amplitude mode. In the NSC15 Cantilever, the first natural frequency is derived from the results of the MC simulation based on Timoshenko beam theory, the practical results are 295.85 and 296.12 kHz, and the error rate is 0.09; at higher natural frequencies, the error rate has been increased. The γ f coefficient is a measure of the nonlinear effects on the system; the effect of the piezoelectric length and width on γ f coefficient is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号