首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two experiments were conducted to study the vacuous jaw movements induced in rats by acute administration of the monoamine-depleting agent reserpine. In the first experiment, different doses of reserpine (1.25, 2.5, and 5.0 mg/kg) were assessed for their ability to induce vacuous jaw movements. Acute administration of reserpine induced a dose-related increase in vacuous jaw movements, with the two highest doses being significantly different from the vehicle control. In the second experiment, interactions between 5.0 mg/kg reserpine and the dopamine agonist apomorphine were investigated. Coadministration of reserpine with the lowest dose of apomorphine (0.1 mg/kg) significantly increased vacuous jaw movements relative to reserpine alone. The two higher doses of apomorphine (0.5 and 1.0 mg/kg) significantly decreased vacuous jaw movements in reserpine-treated rats. These results demonstrate that vacuous jaw movements are induced by acute reserpine treatment in a dose-related manner. In addition, the interactions with apomorphine suggest that vacuous jaw movements are stimulated by decreases in dopamine release produced by low doses of apomorphine that are thought to have mainly presynaptic actions, but that these movements are decreased by higher doses of apomorphine that are known to act postsynaptically.  相似文献   

2.
The pathophysiologic basis of tardive dyskinesia remains unclear. It has been proposed that tardive dyskinesia may be a result of excitotoxic neurodegeneration in the striatum caused by a neuroleptic-induced increase in striatal glutamate release and impaired energy metabolism. To investigate this hypothesis, haloperidol decanoate (38 mg/kg/four weeks intramuscularly) and the succinate dehydrogenase inhibitor 3-nitropropionic acid (8 mg/kg/day via subcutaneous osmotic mini-pumps), were administered alone or together for 16 weeks to four-months-old rats. Control rats received sesame oil intramuscularly and had empty plastic tubes subcutaneously. Vacuous chewing movements, a putative analogue to human tardive dyskinesia, were recorded during and after drug treatment. Haloperidol alone, 3-nitropropionic acid alone, and 3-nitropropionic acid+haloperidol treatments induced an increase in vacuous chewing movements. However, vacuous chewing movements were more pronounced and appeared earlier in rats treated with 3-nitropropionic acid+haloperidol. After drug withdrawal, increases in vacuous chewing movements persisted for 16 weeks in the haloperidol alone and 3-nitropropionic acid+haloperidol group and for four weeks in the 3-nitropropionic acid alone group. Brains from each group were analysed for histopathological alterations. Bilateral striatal lesions were present only in rats with high levels of vacuous chewing movements in the 3-nitropropionic acid+haloperidol-treated rats. Nerve cell depletion and astrogliosis were prominent histopathologic features. There was selective neuronal sparing of both large- and medium-sized aspiny striatal neurons. These results suggest that mild mitochondrial impairment in combination with neuroleptics results in striatal excitotoxic neurodegeneration which may underlie the development of persistent vacuous chewing movements in rats and possibly irreversible tardive dyskinesia in humans.  相似文献   

3.
Rats were tested in an instrumental lever pressing procedure, in which a computer program recorded detailed parameters of responding such as response initiation and duration. Initially, rats with ventrolateral striatal dopamine depletions and control rats were tested on days 3-5 after surgery. Dopamine depletions produced by local injections of 6-hydroxydopamine substantially reduced the number of lever presses emitted. Dopamine depleted animals showed significant increases in average response initiation times, average length of fast initiation times, average length of pauses and total pause time. The distribution of initiation times was altered so that DA depleted rats showed significant reductions in the relative number of very high rate responses and also showed increases in the relative number of pauses. On day 7 after surgery, dopamine-depleted rats received one of three drug treatments: injections of ascorbate vehicle, injections of 20.0 mg/kg L-DOPA, and injections of 40.0 mg/kg L-DOPA. Injections of 40.0 mg/kg L-DOPA led to some improvement in several parameters of instrumental responding. Compared to the previous baseline day, the group that received 40.0 mg/kg L-DOPA showed a significant increase in number of responses on the drug treatment day, and also showed significant decreases in average response initiation time and total pause time. The group that received 40.0 mg/kg L-DOPA also showed significant increases in number of responses (expressed as a percent of the previous day) when compared to the control group that received injections of ascorbate vehicle. These results indicate that L-DOPA can partially reverse the skilled motor deficits produced by ventrolateral striatal dopamine depletions, and suggest that this test may be useful for the assessment of antiparkinsonian drugs.  相似文献   

4.
The effects of the opioid receptor antagonist naloxone on behavioural responses to the dopamine D1 receptor agonist SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) were assessed in the rat. SKF 38393 (5 mg/kg s.c.) induced grooming and vacuous chewing mouth movements. SKF 38393-induced grooming was dose-dependently attenuated by naloxone (0.375-1.5 mg/kg s.c), while vacuous chewing movements were unaffected. These findings suggest that dopamine D1 receptor agonist-induced grooming is dependent upon opioid systems, while vacuous chewing movements are likely to be mediated via different pathways.  相似文献   

5.
Female rats with continuous access to water and 6% ethanol were given bilateral ventral striatal 6-OHDA infusions, which induced pronounced striatal depletions of dopamine. The postoperative ethanol consumption of these rats was not significantly affected in comparison to vehicle-infused controls. In a second experiment, female rats received escalating doses of d-amphetamine over a 5-week period (from 1 to 9 mg/kg/injection). Control females were given saline injections. Following a 3-month drug-free interval, the females were given access to ethanol, the concentration of which was gradually increased from 2% to 12% with weekly intervals. Amphetamine-sensitized rats consumed significantly more alcohol than the saline-treated controls. Taken together, these results suggest that striatal dopaminergic mechanisms, while not necessary for basal ethanol drinking, can facilitate alcohol drinking.  相似文献   

6.
Pretreatment with intermittent low-dose administrations of stimulants increases mesostriatal dopamine transmission upon administration of a challenge dose. This occurs without evidence of a long-term dopamine or serotonin depletion. The purpose was to examine whether pretreatment with low doses of methamphetamine enhances dopamine and/or glutamate efflux and the subsequent depletion of dopamine and serotonin produced by neurotoxic challenge doses of methamphetamine. Microdialysis was used to measure simultaneously extracellular concentrations of dopamine and glutamate in the striatum and prefrontal cortex of awake rats. Basal extracellular concentrations of dopamine and glutamate were unaltered following pretreatment with methamphetamine. The increase in methamphetamine-induced striatal dopamine efflux was not significantly different between methamphetamine and saline pretreated groups. In contrast, after high challenge doses of methamphetamine, dopamine efflux in prefrontal cortex was enhanced to a greater extent in methamphetamine pretreated rats as compared to saline pretreated controls. Acute methamphetamine did not enhance glutamate efflux in prefrontal cortex after pretreatment with saline or methamphetamine. The increase in striatal glutamate efflux was blunted in rats pretreated with methamphetamine. When measured 4 days later, dopamine and serotonin content in striatum was depleted in all rats acutely challenged with methamphetamine. However, these depletions were attenuated in rats pretreated with methamphetamine. An acute methamphetamine challenge did not affect dopamine tissue content in the prefrontal cortex of any rats. Serotonin content in cortex was depleted in all groups following the methamphetamine challenge administration, but these depletions were diminished in methamphetamine-pretreated rats. These results are the first evidence that an intermittent pretreatment regimen with low doses of methamphetamine, followed by a 1 week withdrawal, reduces the vulnerability of striatal dopamine and serotonin terminals and cortical serotonin terminals to methamphetamine neurotoxicity. These findings provide evidence for the mechanism leading to methamphetamine neurotoxicity.  相似文献   

7.
Tardive dyskinesia (TD) is a serious side-effect of long-term treatment with neuroleptics. To investigate if TD may be a result of neuroleptic-induced excessive stimulation of striatal glutamate receptors, the effect of the anti-excitotoxic GM1 ganglioside was studied in a rat model of TD. In an acute experiment each of four groups of rats was treated with GM1 20 mg/kg SC+saline IP, saline SC+haloperidol 1.2 mg/kg IP, GM1 SC+haloperidol IP, or saline SC+saline IP. In a subsequent long-term experiment lasting 16 weeks, each of the four groups was treated as in the acute experiment, with the exception that haloperidol was injected IM as decanoate 38 mg/kg every 4 weeks, and the controls received vehicle injections. The behavior was videotaped and scored at intervals during both experiments, including 16 weeks after cessation of the long-term treatment. Haloperidol induced a significant increase in vacuous chewing movements (VCM) and immobility both in the acute and in the long-term experiment. Other categories of behaviour (rearing, moving, sitting) were significantly affected only in the acute experiment. GM1 did not affect any of the acute behavioural effects of haloperidol, but significantly reduced VCM in the long-term experiment. The effects on VCM of haloperidol and GM1 persisted for at least 8 weeks after cessation of the long-term treatment. These results suggest that long-lasting changes in striatal function induced by excessive glutamate receptor stimulation may be a mechanism for the development of VCM in rats and perhaps also for TD in humans.  相似文献   

8.
During chewing, a small part of the observed muscle activity is needed for the basic open-close movements of the mandible, and additional muscle activity (AMA) is needed to overcome the resistance of the food. The AMA consists of two contributions: a large peripherally induced contribution, starting after food contact and a small anticipating contribution, starting before food contact. We investigated whether the latencies of these contributions depend on the expected or actual bolus size. Subjects made rhythmic open-close movements near their natural chewing frequency controlled by a metronome. This frequency was determined while the subjects were chewing gum. Food resistance was simulated by an external force, acting on the jaw in a downward direction during part of the closing movement. Bolus size was simulated by the jaw gape at which the force started. Jaw movement and surface EMG of the masseter and anterior temporal muscles on both sides and the suprahyoid muscles were recorded during experiments in which the jaw gape at which the force started was varied. The peripherally induced contribution to the AMA started about 20 ms after the onset of the force, irrespective of the jaw gape at which the force started. It is concluded that the onset of this contribution depends solely on food contact in the actual cycle. The function of the observed mechanism for jaw elevator muscle control may be to enable a highly automatic control of the muscle activity required to overcome the resistance of food of different hardness and different size. The onset of the anticipating contribution to the AMA showed neither a relationship with the actual jaw gape at which force onset occurred nor with the expected jaw gape of force onset. It is suggested that the onset of the anticipating AMA is related to the jaw gape at the onset of closing. The function of this contribution may be the regulation of the mechanical response of the jaw after an expected disturbance of the closing movement by food contact, by tuning the muscle stiffness to the expected hardness of the food.  相似文献   

9.
Four experiments were conducted to determine the effects of dopamine (DA) antagonists and DA depletions on progressive-ratio responding for food reinforcement. On this schedule, ratio requirement increased by one response after each reinforcer was obtained, and rats were tested in 30-min sessions. Response rates and highest ratio completed were reduced in a dose-related manner by systemic injections of the D1 antagonist SCH 23390, and also by the D2 antagonists haloperidol and raclopride. Drug-treated rats also showed reductions in time to complete the last ratio, demonstrating that they had stopped responding before the end of the session. DA depletions produced by injections of 6-OHDA directly into the nucleus accumbens substantially decreased both the number of responses and the highest ratio completed. The deficits in response number and highest ratio completed induced by DA depletions persisted through the first 3 weeks of postsurgical testing, with some recovery by the fourth week. However, the deficits resulting from dopamine depletions were largely a manifestation of a decrease in response rate; although time to complete the last ratio was significantly reduced by dopamine depletions in the first few days of testing, rats recovered on this measure by the fifth day after surgery. Although previous work has shown that performance on several schedules (e.g., continuous, low value ratios, variable interval) is relatively unaffected by accumbens DA depletions, the present data demonstrate that such depletions do produce a substantial and persistent impairment of progressive ratio response output. Rats with accumbens DA depletions appear to have deficits in maintaining the high work output necessary for responding at large ratio values. The relative sparing of responding on some simple schedules, together with the present progressive ratio results, suggest that rats with accumbens DA depletions remain directed toward the acquisition and consumption of food, but they show deficits in work output for food.  相似文献   

10.
To quantitatively assess the orolingual dysfunctions produced by unilateral striatal dopamine depletions, rats first received 6-hydroxydopamine injections into the nigrostriatal bundle and were then trained to lap water from a force-sensing disk in 2-min sessions. Compared with controls and rats with moderate (75%) dopamine depletions showed decreases in number of licks, lick rhythm, and lick peak force. Rats with substantial lesions were also impaired in making initial, within-session adjustments in lick peak force but not in lick rhythm. The results confirm the presence of Parkinson-like deficits in tongue dynamics during consummatory licking behavior in rats. The methods used here should prove useful in providing quantitative measures of the efficacy of experimental therapies in this rodent model of Parkinson's disease. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

12.
Near total striatal dopamine denervation results in a decrease in substance P and an increase in enkephalin messenger RNA expression in the striatum. It is unknown whether partial depletions of striatal dopamine content produce similar changes in these peptide messenger RNAs. To test whether compensations in dopamine synthesis and release following partial dopamine denervation prevent the lesion-induced alterations in substance P and enkephalin messenger RNAs, varying concentrations of 6-hydroxydopamine were injected unilaterally into the substantia nigra. Seven days after injection of 6-hydroxydopamine (2-16 micrograms) or vehicle, in situ hybridization histochemistry was used to examine tyrosine hydroxylase messenger RNA in the substantia nigra and substance P and enkephalin messenger RNAs in the striatum. The extent of the dopamine depletion was determined by measuring striatal dopamine tissue content. The decrease in tyrosine hydroxylase messenger RNA paralleled the change in striatal tissue dopamine content. Substance P messenger RNA was decreased in all lesioned rats. In contrast, a significant increase in enkephalin messenger RNA was not detected until striatal dopamine was reduced to 10% of control levels. These results suggest that compensations within the residual dopamine system are not sufficient to maintain normal striatal substance P messenger RNA levels in partially denervated animals, but are sufficient to maintain normal striatal enkephalin messenger RNA expression.  相似文献   

13.
Pretreatment with ginseng total saponin (GTS) reduced the magnitude of the methamphetamine-induced dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillinic acid (HVA) depletions. It is suggested that GTS can, in part, prevent the methamphetamine-induced striatal dopaminergic depletions.  相似文献   

14.
The effects of deprenyl on methamphetamine-induced dopamine depletions were studied in mice. Four SC injections of 12.5 mg/kg of methamphetamine at two-hour intervals caused substantial (72-82%) and long-lasting depletions of striatal dopamine. Pretreatment with either 25 or 40 mg/kg of deprenyl did not significantly alter the magnitude of this depletion. These results indicate that, unlike what is observed following MPTP, there is no protection afforded dopaminergic cells by deprenyl pretreatment in the methamphetamine model of parkinsonism.  相似文献   

15.
An in vitro jaw-attached brainstem preparation was developed to investigate the relationship between jaw opener and closer muscle activity during chemically induced rhythmical jaw movements in neonatal rats. In the majority of preparations examined, where a defined region of brainstem was isolated and the neuronal innervation of the jaw opener and closer muscles was left intact, bath application of the excitatory amino acid agonist N-methyl-D,L-aspartate (NMA, 20-40 microM) in combination with bicuculline (BIC 10 microM), a GABA(A) antagonist, produced rhythmical electromyogram (EMG) activity in jaw opener and closer muscles, bilaterally, in conjunction with rhythmical jaw movements. Low concentrations of NMA (20 microM) in combination with BIC produced temporally coordinated activity between the jaw opener and closer muscles, ipsilaterally. With higher doses of NMA (40 microM), each muscle group exhibited bursting, but temporal coordination between them was difficult to establish. Similarly, NMA application in combination with the glycine antagonist strychnine (STR, 10 microM), also produced rhythmical EMG activity from both opener and closer muscles, ipsilaterally, but showed no temporal coordination between the antagonist muscle pair. However, coordination of opener and closer muscle discharge could be restored by the addition of BIC to the bath. We suggest that there exist separate, but coordinated, rhythm generator circuits for opener and closer motoneuronal discharge located in close proximity to the trigeminal motor nucleus and under GABAergic control for production of temporal coordination between rhythmogenic circuits.  相似文献   

16.
1. Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist. 2. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10 mM for 40 min at a flow rate of 2 microl min(-1)) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, gamma-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20 mM), the sodium channel blocker tetrodotoxin (1 microM) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100 microM). The effectiveness of locally (600 microM) or systemically (10 mg kg(-1) day(-1)) applied lamotrigine against the pilocarpine-induced convulsions was evaluated. 3. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally. 4. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release.  相似文献   

17.
Metabotropic glutamate receptors are a major class of excitatory amino acid receptors. Eight metabotropic glutamate receptors subtypes have been cloned and have been classified into three groups based on their amino acid sequence homology, effector systems, and pharmacological profile. Previous results have shown that striatal group I metabotropic glutamate receptor stimulation produces vigorous contralateral rotation in intact rats, thought to be due to increased striatal dopamine release. Examination of FOS-like immunoreactivity and local cerebral glucose metabolism suggests that this occurs secondary to activation of the subthalamic nucleus. We sought to determine the contribution of dopamine by examining metabotropic glutamate receptor agonist-induced rotation in rats following acute dopamine depletion by reserpine/alpha-methyl-para-tyrosine treatment, or chronic dopamine depletion by 6-hydroxydopamine treatment. In unilateral 6-hydroxydopamine lesioned rats, the group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine induced contralateral rotation with a coincident increase in striatal 3,4-dihydroxyphenylacetic acid. The rotation was attenuated by the group I antagonist 1-aminoindan-1,5-dicarboxylate. Examination of FOS-like immunoreactivity and [14C]2-deoxyglucose uptake in chronically dopamine depleted rats also revealed similar patterns to those seen previously in intact rats. However, acutely dopamine depleted rats do not exhibit metabotropic glutamate receptor agonist-induced rotation and show a different pattern of [14C]2-deoxyglucose uptake, with no increase in glucose utilization in the intermediate and deep layers of the superior colliculus. These results suggest that there are compensatory changes under conditions of chronic dopamine denervation which permit metabotropic glutamate receptor agonist-induced rotation to occur, which may include dopamine receptor supersensitivity, increased dopamine turnover, and/or changes in sensitivity of striatal group I metabotropic glutamate receptors. The group III metabotropic glutamate receptor agonist L-(+)-2-amino-4-phosphonobutyrate induced contralateral rotation in 6-hydroxydopamine lesioned rats, while it had no effect in intact rats. Additionally, examination of FOS-like immunoreactivity revealed a distinct pattern following L-(+)-2-amino-4-phosphonobutyrate administration in 6-hydroxydopamine lesioned versus intact rats. These results suggest that there is a change in the effect of striatal group III stimulation under conditions of dopamine depletion.  相似文献   

18.
Chorea is a hyperkinetic involuntary movement disorder characterized by a random pattern of irregular muscle jerks. This movement may involve any parts of the body. Emotional stress or voluntary movements may exacervate chorea and sleep abolish it. Luys body and striatum are the most important anatomical sites to evoke chorea. The lesion of inner segment of pallidum or ventrolateral thalamus may abolish chorea. Measurements of neurotransmitter changes of Huntington's disease show diminution of striatal GABA neurons and preserving nigrostriatal dopamine neurons. Dopamine antagonists can reduce chorea because doperminergic hyperactivity contribute to exacervate chorea. Precise pathophysiological mechanism of chorea is controversial, therefore its classification is not established. On the clinical point of view, classification according to heredity is useful to make diagnosis because hereditary diseases are easily confirmed by family history or specific biochemical markers. There are two groups of underlying diseases of non hereditary chorea. One is unilateral chorea usually due to contralateral hemispheric lesions to chorea. Another is bilateral chorea usually due to degenerative, metabolic or toxic brain diseases. Recent identification of abnormal DNA structure (trinucleotide repeat) in Huntington's disease may greatly contribute to classify underlying diseases of chorea.  相似文献   

19.
Bilateral electrolytic lesions of the lateral hypothalamus or intraventricular 6-hydroxydopamine injections produced substantial depletions of striatal dopamine in 14 male albino rats. All Ss with brain damage showed marked sensorimotor impairments compared to 21 controls; however, they began to move and respond appropriately to environmental stimuli when placed in a sink of water, in a shallow ice bath, or among a colony of cats or rats. A reversal of the sensorimotor dysfunctions was still apparent shortly after Ss were removed from each activating situation; however, the therapeutic effects dissipated rapidly, and by 4 hrs after an exposure Ss responded as poorly as they had prior to activation. Findings are strikingly similar to the "paradoxical kinesia" seen in parkinsonism, a clinical disorder attributed to degeneration of central dopamine-containing neurons. Collectively, they suggest the importance of activation in maintaining responsiveness to sensory stimuli in rats following dopamine-depleting brain lesions. (36 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
The syndrome of vacuous chewing movements (VCMs) in rats is similar in many respects to tardive dyskinesia (TD) in humans. Both syndromes are characterized by delayed onset of persistent orofacial dyskinesias in a sub-group of subjects chronically treated with neuroleptics. Using the rat model, we examined the role of NMDA receptor-mediated corticostriatal neurotransmission in the expression of VCMs. Rats were treated for 36 weeks with haloperidol decanoate or vehicle and then withdrawn for an additional 28 weeks. Chronic persistent VCMs were induced in one subgroup of treated animals (+VCM), but not in another group (-VCM). Rats from +VCM, -VCM groups and vehicle-treated controls were selected for post mortem studies (n = 12 to 14 per group). NMDA receptor levels were assessed using [3H]-MK-801 binding in sections from the mid-striatum and nucleus accumbens. Chronic haloperidol treatment produced a marked reduction of NMDA receptor binding levels throughout the striatum and nucleus accumbens. Post hoc comparisons demonstrated that -VCM rats had lower NMDA receptor binding levels than +VCM and vehicle-treated controls. Ventromedial striatum and nucleus accumbens core were the most affected areas. These findings suggest that down-regulation of striatal NMDA receptor binding levels may protect against the expression of neuroleptic-induced dyskinesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号