首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Owing to their special three-dimensional network structure and high specific surface area,TiO2 submicrospheres have been widely used as electron conductors in photoanodes for solar cells.In recent years,utilization of TiO2 submicrospheres in solar cells has greatly boosted the photovoltaic performance.Inevitably,however,numerous surface states in the TiO2 network affect electron transport.In this work,the surface states in TiO2 submicrospheres were thoroughly investigated by charge extraction methods,and the results were confirmed by the cyclic voltammetry method.The results showed that ammonia can effectively reduce the number of surface states in TiO2 submicrospheres.Furthermore,in-depth characterizations indicate that ammonia shifts the conduction band toward a more positive potential and improves the interfacial charge transfer.Moreover,charge recombination is effectively prevented.Overall,the cell performance is essentially dependent on the effect of the surface states,which affects the electron transfer and recombination process.  相似文献   

2.
This study uses TiO2 nanoparticles and highly ordered anatase TiO2 nanotubes (AOTnt) as thin film photoanodes for dye-sensitized solar cells (DSSCs). DSSCs are assembled by single-layer and double-layer films of photoanodes and their electron transfer performance is compared. TiO2 nanoparticles were fabricated by the sol-gel method, and AOTnts were grown on titanium foil. This study uses TiO2 nanoparticles or AOTnts to prepare single-layer photoanodes and TiO2 nanoparticles coated on an AOTnt film to fabricate double-layer photoanodes. These three different photoanodes are soaked in dye and assembled into DSSCs, and their open-loop voltage recession, electrochemical impedance, lifetime, life cycle, and effective diffusion coefficient are measured. Electron transfer efficiency of the photoanodes and light harvesting efficiency are further analyzed. The results show that the electron transfer efficiency, open-loop voltage recession, lifetime, life cycle, and effective diffusion coefficient of the DSSCs assembled using double-layer photoanodes (AOTnt-TiO2) are superior to those of single-layer photoanodes (TiO2 or AOTnt).  相似文献   

3.
The rational selection and assembly of materials are central issues in the development of energy conversion and storage applications. Incorporating the utilization of carbon nanotubes cathode and TiO2 nanotubes anode in energy storage, a nonaqueous hybrid supercapacitor was developed in order to significantly increase the energy density of the supercapacitor. The electrochemical performance of the hybrid supercapacitor is characterized by charge/discharge test and cyclic voltam-mograms. According to the voltage value, the energy density of the asymmetric supercapacitor, by applying a potential varying from 0 to 2.8 V, is found to be 14.4 Wh/kg at upwards of 10 C, which is twice more than for the conventional symmetric supercapacitor utilizing carbon nanotubes, while maintaining desirable cycling stability and rate capability.  相似文献   

4.
ABSTRACT

We successfully synthesised TiO2 nanotubes (TNTs) and silver nanoparticles (Ag NPs)-loaded TiO2 nanotubes paste. These were coated on a glass substrate by spin coating method, and their antibacterial activities were surveyed. The morphology of materials was defined by transmission electron microscopy (TEM) image; the crystalline structure and the composition of the materials were determined by X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS). Vibrational properties of the molecules existing in the sample were investigated by Fourier transform infrared (FTIR) spectroscopy, and the transmittances of films were determined by UV–Vis transmittance spectroscopy. This research shows that the structure and morphology of TNTs did not change after they underwent the processes of paste preparing and film coating on a glass substrate. Furthermore, the transmittance of TNTs film (about 75%) is higher than Ag NPs-loaded TiO2 nanotubes (Ag/TNTs) film (about 65%) in the visible region. Moreover, the antibacterial property of Ag/TNTs film shows its effectiveness against Escherichia coli bacteria, and the antibacterial efficiency is 99.06% for 24 h-incubation period in the dark condition.  相似文献   

5.
首次采用温和的制备方法制得Al2O3-TiO2纳米管.TiO2粉体在700℃下熔融、110℃水热反 应,制备了管径约为数纳米、单层管壁厚约为0.2纳米,管长约为数微米的复合Al2O3-TiO2纳米管.组织形貌和特性使用TEM、DRS和XRD进行表征.由于Al2O3的沉积在TiO2纳米管上,导致纳米管对紫外光的吸收蓝移40 nm.并对其形成机理进行了讨论.  相似文献   

6.
TiO2 nanotubes have been prepared by anodisation of titanium foil and their antibacterial activities have been tested against Gram-positive bacteria (Bacillus atrophaeus) while photocatalytic activity was tested for the degradation of the methyl orange dye. We found that the annealing temperature strongly affected antibacterial activity and photocatalytic dye degradation, as well as the production of reactive oxygen species under illumination. However, different trends were observed for dye degradation and antibacterial activity dependence on the annealing temperature. The relationship between annealing conditions, crystal structure, reactive oxygen species generation, dye degradation and antibacterial activity is discussed.  相似文献   

7.
Shin Y  Lee S 《Nano letters》2008,8(10):3171-3173
The formation of self-organized regular arrays of oxide nanotubes lies in a delicate balance between the oxide growth rate and the oxide etching rate and a lattice mismatch between the grown metal oxide and the underlying valve metal. The requisites for their fabrication are the electropolishing and a two-step anodization. The most uniform and self-organized regular arrays of anodic TiO2 nanotubes among those known so far are reported as another example of valve metal oxide nanotube arrays since regular arrays of anodic aluminum oxide nanochannels were produced. Our findings can be generalized to fabricate self-organized regular arrays of other valve metal oxides.  相似文献   

8.
氮掺杂二氧化钛纳米管制备与光催化性能   总被引:10,自引:2,他引:8  
孙超  黄浪欢  刘应亮 《功能材料》2005,36(9):1412-1414,1417
以多孔氧化铝为模板,采用溶胶凝胶法制备出二氧化钛纳米管,在氨气气氛下进行了氮掺杂。用TEM、XRD、DRS等对其进行了表征,并通过降解碱性藏花红溶液研究了其光催化的性能。结果表明,用模板法制备的二氧化钛纳米管管径均匀、可控且排向一致,从DRS光谱可以推测出氮掺杂后的二氧化钛纳米管在可见光区有较强的吸收,并且与二氧化钛纳米管相比氮掺杂的二氧化钛纳米管的降解碱性藏花红溶液的效率更高。  相似文献   

9.
Liu H  Ding D  Ning C  Li Z 《Nanotechnology》2012,23(1):015502
Anatase-type titania nanotubes doped with Nb element were fabricated through an anodization of Ti35Nb alloy substrate and further annealing at 450 °C. Hydrogen sensitivity of the Nb-doped TiO(2) nanotubes at room temperature was investigated through exposure of the nanotube samples to different hydrogen atmospheres. At room temperature, the Nb-doped nanotubes demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H(2). The Nb-doped nanotubes also presented remarkable reversibility and repeatability as well as a quick response to the hydrogen atmosphere. The Nb-doped titania nanotubes have great advantages as robust and wide-range hydrogen sensors operating at room temperature.  相似文献   

10.
TiO2纳米管与纳米线的光电化学研究   总被引:1,自引:0,他引:1  
郝彦忠  王利刚 《功能材料》2008,39(5):874-876
利用在钛箔表面沉积一层TiO2纳米粒子作为晶种,与NaOH反应,通过改变反应温度制备了TiO2纳米管与纳米线.制备了TiO2纳米管和纳米线膜电极,并进行了光电化学测试.光电化学实验表明,混晶结构TiO2纳米管和纳米线显示出优良的光电转化性能.  相似文献   

11.
用两步水热合成方法制备硼掺杂纳米晶TiO2粉体,研究了硼在纳米晶氧化钛中的掺杂状态.结果表明,一定硼源加入和水热过程是在TiO2粉体中实现有效硼掺杂的必要条件.当硼含量较高时,硼原子在Ti02表面形成具有可调节Ti02能带结构的B-Ti-O表面掺杂态,可有效提高TiO2的可见光吸收性能,而且可见光吸收强度随着硼掺杂量的增大而提高.  相似文献   

12.
采用阳极氧化法在纯钛表面制备TiO2纳米管,并通过扫描电子显微镜(SEM)对其表面形貌进行了表征。采用三电极体系,检测纯钛和TiO2纳米管在不同pH人工唾液中的耐蚀性能。结果表明,TiO2纳米管在不同pH人工唾液中都具有和纯钛一样良好的耐蚀性能,而在pH=5.5的人工唾液中,TiO2纳米管/Ti基生物材料的耐蚀性要稍好于纯钛,使其作为牙科材料有良好的开发和应用前景。  相似文献   

13.
A simple method to achieve self-organized, freestanding TiO2 nanotube array was constructed, free of corrosive etching process which was traditionally employed to separate TiO2 nanotubes from the metallic Ti substrate. The TiO2 nanotube arrays were constructed through potentiostatic anodization of Ti foil in aqueous electrolyte containing NH4F and ethylene glycol. The nanotubes in the array were of 45 μm lengths and 100 nm average pore diameters. The effect of NH4F concentration on the length of the self-organized nanotube arrays was investigated. Electrochemical and spectroscopic measurements showed that the as-prepared nanotubes possessed large surface areas, good uniformity, and were ready for enzyme immobilization. The as-prepared nanotube arrays were amorphous, but crystallized with annealing at elevated temperatures, as demonstrated by X-ray diffraction (XRD).  相似文献   

14.
Enhanced cellular mobility guided by TiO2 nanotube surfaces   总被引:1,自引:0,他引:1  
The in vitro endothelial response of primary bovine aortic endothelial cells (BAECs) was investigated on a flat Ti surface vs a nanostructured TiO2 nanotube surface. The nanotopography provided nanoscale cues that facilitated cellular probing, cell sensing, and especially cell migration, where more organized actin cytoskeletal filaments formed lamellipodia and locomotive morphologies. Motile cell protrusions were able to probe down into the nanotube pores for contact stimulation, and focal adhesions were formed and disassembled readily for enhanced advancement of cellular fronts, which was not observed on a flat substrate of titanium. NOx and endothelin-1 functional assays confirmed that the nanotubes also up-regulated an antithrombic cellular state for maintaining vascular tone. The enhanced endothelial response to TiO2 nanotubes is significant for a potential modification of vascular stent surfaces in order to increase the rate and reliability of endothelialization and endothelial cell migration onto the stent for repairing arterial injury after activation.  相似文献   

15.
16.
An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.  相似文献   

17.
18.
《Materials Research Bulletin》2006,41(6):1097-1104
Three approaches, impregnation–reduction, deposition and direct assembly, are used to fabricate gold-modified TiO2 nanotubes. Prepared materials are characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV–visible absorption spectroscopy and BET, etc. The gold-modified TiO2 nanotubes prepared via various procedures exhibit distinct difference in structure. By impregnation–reduction approach, gold-modified TiO2 nanotubes with large gold particles are fabricated. The gold particles are either deposited on or encapsulated in TiO2 nanotubes. However, by using gold hydrophilic colloidal dispersion as gold precursor, gold particles in the modified TiO2 nanotubes are very small. Gold particles only adhere to the outer surface of TiO2 nanotubes after deposition process, whereas adhere to not only the outer but also the inner walls of TiO2 nanotubes after direct assembly process. A possible mechanism is proposed to illustrate the formation of gold-modified nanotubes that are prepared by direct assembly process.  相似文献   

19.
Dye-Sensitized Solar Cells (DSSCs) comprised of TiO2 porous films with multi-walled carbon nanotubes (MWNT) were prepared at low temperature (150 degrees C). MWNT were incorporated to facilitate the fast electron transport resulting from metallic properties of carbon nanotubes. In order to enhance the effect of MWNT incorporation, TiO2-grafted MWNT (TiO2-MWNT) was synthesized which can increase the electron transport rate further due to proximity of TiO2 to MWNT The presence of TiO2 nanoparticles on the surface of MWNT was confirmed by electron microscopy and energy dispersive X-ray spectroscopy. As in the DSSCs prepared through high temperature sintering of photoanodes, the maximum content of MWNT incorporated into TiO2 was limited to 0.01 wt% relative to TiO2. TiO2 photoanodes including TiO2-grafted MWNT (TiO2-MWNT/P25) enhanced the cell efficiencies by ca. 28% and 14%, relative to TiO2 photoanodes without and with MWNT respectively, reaching the efficiency of 5.0%. Electrochemical impedance spectroscopy (EIS) was utilized to examine the effect of incorporation of TiO2 nanoparticles grafted to MWNT on the cell performance.  相似文献   

20.
TiO2/carbon nanotubes (CNTs) composite nanofibers were prepared by sol-gel processing followed by electrospinning technique. Phase pure titania/CNT nanofiber of 100–150 nm diameters were obtained by high temperature calcinations of the inorganic organic composite fibers. The inclusion of nanotubes with TiO2 was confirmed by FT-IR and Raman spectra and corresponding morphology and crystallinity were observed by SEM, TEM, and XRD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号