首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
给出了一个压电功能梯度层合梁振动分析的两节点力-电-热耦合梁单元,并将其用于功能梯度层合梁的振动最优控制。在这个多场耦合梁单元中,功能梯度材料的等效力学性能用Voigt或Mori-Tanaka模型表征;梁的位移场用Shi改进的三阶剪切变形板理论描述;压电层的电势场用Layer-wise理论分层表征,且呈高阶非线性电势场的压电层可离散成数个子层。用Hamilton原理推导了压电功能梯度梁的力-电-热耦合单元列式,用拟协调元法给出了多场耦合梁单元的高计算效率的显式单元刚度矩阵,以及采用线性二次型(LQR)最优控制算法进行压电功能梯度层合梁的最优振动控制。使用所得力-电-热耦合梁单元进行了压电功能梯度层合梁的静力和动力分析。数值算例表明,所得力-电-热耦合梁单元可靠、准确和高效,LQR最优控制算法得到最优控制电压可有效抑制功能梯度梁的振动且实现控制系统能量的优化。  相似文献   

2.
压电层合结构力学模型评述   总被引:2,自引:0,他引:2  
对于存在力场、电场和热场相互耦合的压电层合结构,建立合理的热机电耦合数学模型,是进行结构振动主动控制、形状控制和优化设计的基础.通过假设适当的位移、电势和温度分布模型,根据Hamilton原理或虚功原理导出系统动(静)力学模型是一种有效的建模方法.在推导压电层合结构热机电耦合基本方程的基础上,根据位移、电势和温度分布模型的不同假设,对各种近似力学模型进行评述,指出各种模型的优缺点.最后简单展望该领域今后的发展方向.  相似文献   

3.
压电复合(层合)结构可应用于结构振动控制、形状保持、健康监测等,建立压电层合结构精确的机电耦合计算模型成为了研究的焦点.针对表面粘贴或内部嵌入压电片的压电层合板结构,基于高阶位移场和高阶电势模型,根据Hamilton原理建立了机电耦合高阶有限元模型.该模型适用于薄板和中厚板,并且能够捕捉压电层内沿厚度方向呈抛物线型分布的诱导电势.以压电双晶片简支板为例,进行了作动器构型和开环、闭环状态传感器构型的数值分析.结果指出,诱导电势对压电传感器有重要影响,而压电作动器可忽略这种电势.  相似文献   

4.
含压电片复合材料层合板的高阶计算模型   总被引:1,自引:1,他引:1       下载免费PDF全文
给出了一种分析含任意内埋压电片复合材料层合板的高阶耦合模型, 板的位移场采用三阶剪切理论, 并提出了压电片中电势场在厚度方向的三次分布模式, 可以更精确地描述力、电耦合作用下电场的非均匀分布。在平面应力的假设下给出了简化的压电材料本构方程, 推导了基于该模型的压电层合板有限元计算公式, 并对双压电片梁的弯曲和层合板的变形控制进行了计算, 压电梁的弯曲计算结果与解析结果吻合良好, 表明本文的模型和公式是精确有效的。  相似文献   

5.
基于对压电复合材料层合结构弱界面弹性场、电场、温度场的宏观和细观尺度分析, 构建了四种界面力-电-热模型, 分别为非耦合型、耦合型和混合型。依据这些界面模型, 得到了柱面弯曲简支压电复合材料层板的力-电-热多场耦合解。结果表明, 损伤界面的多场耦合物理描述介于宏观和细观尺度之间, 需要多尺度考虑, 且基于不同尺度的描述也可获得相似的规律。在热载和力载下, 不同的界面模型对弹性场影响趋同、差异甚小, 而对电场和温度场, 四种模型的影响各异、但规律相似; 在电载作用下, 不同的界面模型无论对弹性场还是电场, 都有显著的影响。  相似文献   

6.
压电控制层合梁的振动分析   总被引:4,自引:1,他引:3  
本文分析由压电材料进行控制的复合层合梁,利用哈密顿原理分析压电效应与结构变形的耦合作用,考虑到电场条件对结构变形的影响,推导出压电层合梁的运动方程,并求得了压电层合梁固有特性与电场的关系.并以两端简支层合梁为算例进行分析,并将计算结果与实验结果进行比较,从而证明了本文分析方法的正确性.  相似文献   

7.
旋转电流变复合梁的有限元建模分析   总被引:2,自引:0,他引:2  
研究了含有电流变材料层的旋转复合梁的振动特性。利用Hamilton原理和有限元方法推导了电流变夹层梁的动力学方程。分析了外加电场、旋转速度及电流变层的厚度等对梁的固有频率和模态损耗因子的影响。仿真结果表明电流变材料在外加电场作用下,能显著提高系统的阻尼损耗因子,可有效抑制旋转梁结构的振动。  相似文献   

8.
丁兰  尹涛  朱宏平 《振动与冲击》2014,33(11):100-106
基于Timoshenko梁理论,考虑基梁和压电片的转动惯量和剪切效应,采用有限元法和传递矩阵法建立了振动波在表面周期性粘贴压电片的轴-弯耦合Timoshenko梁中的传播模型,并利用Lyapunov指数及局部化因子分析了几何尺寸和材料特性随机失谐对结构波动局部化的影响。数值分析表明,对于周期压电梁而言,不同基梁材料对结构的频带特性会有较明显影响;而基梁长度及压电材料参数的随机失谐对频带性质和波动局部化程度的影响则十分有限,通过调整结构模型参数仅能微调此梁的波动特性。分析结果对压电周期结构的优化设计和振动控制研究提供了理论参考。  相似文献   

9.
电流变液夹层梁的动力学分析   总被引:6,自引:1,他引:5       下载免费PDF全文
将电流变材料处理为粘弹性材料,采用了线性粘弹性理论,基于夹层梁动力学分析方法,利用广义Hamilton原理,推导了电流变层合梁的动力学方程。在此基础上,研究了具有简单的边界条件夹层梁的动力学特性,得出了在外加电场作用下,电流变层合梁模态频率和模态损耗因子都随着电场的增大而增大;电流变层合梁的低阶模态损耗因子变化趋势大于高阶模态损耗因子的变化趋势;在同样的电场(或电压)作用下,层合梁的低阶模态损耗因子大于高阶模态损耗因子。这些结论表明了电流变层合梁在外加电场作用下,对低频振动具有较好的振动抑振效果。  相似文献   

10.
吹风试验时风洞模型支撑系统往往会产生较大振动,这将影响到风洞试验的准确性和可靠性。因此,研究并实现模型支撑系统的振动控制技术尤其重要。基于压电材料机电耦合行为和振动主动控制原理,设计压电组件嵌入式风洞模型支撑系统;依据刚柔耦合动力学理论,建立模型支撑系统结构振动仿真模型;联合经典PID控制算法,进一步构建模型支撑系统结构控制一体化仿真模型,实现系统主动振动控制仿真;最后,计及接触非线性环节,建立压电组件嵌入式结构有限元模型,校核接触强度,优化嵌入型式。仿真结果表明,压电组件嵌入式模型支撑系统振动控制效果明显,结构安全可靠,具有较强的工程应用性。  相似文献   

11.
 An efficient meshfree formulation based on the first-order shear deformation theory (FSDT) is presented for the static analysis of laminated composite beams and plates with integrated piezoelectric layers. This meshfree model is constructed based on the element-free Galerkin (EFG) method. The formulation is derived from the variational principle and the piezoelectric stiffness is taken into account in the model. In numerical test problems, bending control of piezoelectric bimorph beams was shown to have the efficiency and accuracy of the present EFG formulation for this class of problems. It is demonstrated that the different boundary conditions and applied actuate voltages affects the shape control of piezolaminated composite beams. The meshfree model is further extended to study the shape control of piezo-laminated composite plates. From the investigation, it is found that actuator patches bonded on high strain regions are significant in deflection control of laminated composite plates. Received: 23 October 2001 / Accepted: 29 July 2002  相似文献   

12.
Passive vibration control of flexible structures can be achieved by bonding piezoelectric layers with attached electric circuits onto an elastic substrate. In this work, a new concept, denoted as single point control (SPC), is presented in order to cancel harmonic vibrations of slender beams. It is shown by an extended version of the Bernoulli–Euler theory for passive smart beams that the deflection or the slope at a specified location along the beam axis is nullified if the electric circuit is tuned and the shape of the piezoelastic layers are properly shaped. The proposed method holds for harmonic loads only, but the spatial part of the distributed external load may be unknown. A three-dimensional electromechanically coupled FE-analysis with ANSYS confirms these results obtained by the one-dimensional theory. The practical relevance of the derived theory becomes evident if optimal resistive-inductive shunts are used. The robustness of passively controlled systems is strongly increased if the piezoelectric layers are shaped according to the presented SPC-theory instead of using spatially uniformly distributed layers.  相似文献   

13.
In this paper, state variable formulation for free vibration of the laminated structures bonded and embedded actuators and sensors (piezoelectric and/or piezomagnetic) is established. The present mixed type formulation has the great advantage that the size of the system to be solved is independent of the number of layers and is of order three for free vibration of the laminate with bonded and embedded piezoelectric and/or piezomagnetic layers. Analytical solutions of 3D free vibration of simply supported piezoelectric and piezomagnetic composite plates have been presented. The transfer matrices for either closed circuit or open circuit piezoelectric and piezomagnetic layers are derived. The special case of elastic layer is also treated. The assembly procedure is described for the different electric and magnetic surface conditions. Numerical examples are analyzed to study the vibration characteristics of smart laminate plates with different stacking sequence and different span to thickness ratio.  相似文献   

14.
In the context of noise and vibration reduction by passive piezoelectric devices, this work presents the theoretical formulation and the finite element (FE) implementation of vibroacoustic problems with piezoelectric composite structures connected to electric shunt circuits. The originalities of this work concern (i) the formulation of the electro-mechanical-acoustic coupled system, (ii) the implementation of an accurate and inexpensive laminated composite plate FE with embedded piezoelectric layers connected to resonant shunt circuits, and (iii) the development of an efficient fluid-structure interface element. Various results are presented in order to validate and illustrate the performance of the proposed fully coupled numerical approach.  相似文献   

15.
This paper presents a sequential linear least square algorithm for tracking dynamic shapes of piezoelectric smart structures. The dynamic shape discussed in this paper is defined as a host structural shape varying with time, and the tracking technique is to find an electric voltage history for each piezoelectric device over a time period so that the desired structural movements can be achieved. In the theoretical formulation, dynamic equations of piezoelectric smart structures are introduced by finite element analysis, and then a solution procedure for a set of time‐dependent electric voltages is derived by combining the linear least square method and the Houbolt numerical integration scheme. The formulation indicates that this algorithm can be used to find the time‐dependent voltages for tracking structural movements of piezoelectric smart structures. The present novel formulation is then demonstrated through numerical examples for tracking dynamic shapes of piezoelectric smart beams and plates. The numerical results for the smart beam are compared with the experimental ones. It is shown that the present sequential linear least square algorithm is capable of efficiently simulating dynamic shape tracking for smart structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Quasi-static shape control of a smart structure may be achieved through optimizing the applied electric fields, loci, shapes and sizes of piezoelectric actuators attached to the structure. In this paper, a finite element analysis (FEA) software has been developed for analyzing static deformation of smart composite plate structures with non-rectangular shaped PZT patches as actuators. The mechanical deformation of the smart composite plate is modeled using a 3rd order plate theory, while the electric field is simulated based on a layer-wise theory. The finite element formulation is verified by comparing with experimentally measured deformation. Numerical results are obtained for the optimum values of the electric field in the PZT actuators to achieve the desired shape using the linear least square (LLS) method. The numerical results demonstrate the influence of the shapes of actuators.  相似文献   

17.
An analytical formulation is derived for modelling the behaviour of laminated composite beams with integrated piezoelectric sensor and actuator. The major difference in approach to the solution compared to previous studies is that the analytical solution for active vibration control and suppression of smart laminated composite beams is presented in this paper. The governing equation is based on the first-order shear deformation theory (Mindlin plate theory), which is applicable for both thin and moderately beams, and includes the coupling between mechanical and electrical deformations. The voltage generated by the sensor layer and response of the beam to the actuator voltage can be computed independently. In this study, the new assumption of harmonic vibration is introduced, which includes both of the sine and cosine terms. Another contribution of this paper is introducing the transformation method of complex numbers to reduce the order of the governing equation of smart laminated beams. Thus, the exact solution of the reduced governing equation can be obtained by using MATLAB and the entire numerical results are presented. The behaviour of the output voltage from the sensor layer and the input voltage acting on the actuator layer is also studied. Graphical results are presented to demonstrate the ability of closed-loop system to actively control the vibration of laminated beams and it shows a good control effect. The influence of stacking sequence on the controlled transient response of the laminated beam is examined. Finally, the experiential formulation of the amplitude of beam vibration varying with the negative velocity feedback control gain has also been evaluated. The present method has a general application in this field of study.  相似文献   

18.
In this paper, we present an optimal low‐order accurate piezoelectric solid‐shell element formulation to model active composite shell structures that can undergo large deformation and large overall motion. This element has only displacement and electric degrees of freedom (dofs), with no rotational dofs, and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending). The combination of the present optimal piezoelectric solid‐shell element and the optimal solid‐shell element previously developed allows for efficient and accurate analyses of large deformable composite multilayer shell structures with piezoelectric layers. To make the 3‐D analysis of active composite shells containing discrete piezoelectric sensors and actuators even more efficient, the composite solid‐shell element is further developed here. Based on the mixed Fraeijs de Veubeke–Hu–Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved via a new and efficient enhancement of the strain tensor. Shear‐locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. We also present an optimal‐control design for vibration suppression of a large deformable structure based on the general finite element approach. The linear‐quadratic regulator control scheme with output feedback is used as a control law on the basis of the state space model of the system. Numerical examples involving static analyses and dynamic analyses of active shell structures having a large range of element aspect ratios are presented. Active vibration control of a composite multilayer shell with distributed piezoelectric sensors and actuators is performed to test the present element and the control design procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This work deals with the development of a new C1 finite element for analysing the bending and torsional behaviour of rectangular piezoelectric laminated/sandwich composite beams. The formulation includes transverse shear, warping due to torsion, and elastic–electric coupling effects. It also accounts for the inter-layer continuity condition at the interfaces between layers, and the boundary conditions at the upper and lower surfaces of the beam. The shear strain is represented by a cosine function of a higher order in nature and thus avoiding shear correction factors. The warping function obtained from a three-dimensional elasticity solution is incorporated in the present model. An exact integration is employed in evaluating various energy terms due to the application of field consistency approach while interpolating the transverse shear and torsional strains. The variation of the electric potential through the thickness is taken care of in the formulation based on the observation of three-dimensional solution. The performance of the laminated piezoelectric element is tested comparing with analytical results as well as with the reference solutions evaluated using three-dimensional finite element procedure. A detailed study is conducted to highlight the influence of length-to-thickness ratio on the displacements, stresses and electric potential field of piezoelectric laminated beam structures subjected to flexural and torsional loadings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号