首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜、X射线衍射仪等分析了宁波钢铁有限公司生产的取向硅钢不同工序下的组织及织构演变规律.结果 表明:铸坯经过热轧后,沿着厚度方向组织不均匀;一次冷轧并经脱碳退火后,组织由条状纤维状变成等轴状的初次再结晶晶粒,初次再结晶平均晶粒尺寸为18.17 μm,织构主要以α织构和γ织构为主;在二次冷轧后,晶粒再次被压缩,转变为纤维状,织构主要为γ织构;经过高温退火后,发生二次再结晶,晶粒异常长大,晶粒尺寸达到厘米级,织构成分为单一且锋锐的Goss织构.  相似文献   

2.
The present work concentrates on the application of orientation imaging microscopy (OIM) based on the electron backscattered diffraction (EBSD) technique to the investigation of the microstructural evolution of an extra-low carbon (ELC) steel and a Ti-Nb-bearing interstitial-free (IF) steel, during continuous annealing. Aspects like the nucleation, the evolution of the recrystallized volume fraction and grain size of grains with different orientations, the interface area limiting recrystallized {111} regions, and the apparent growth rates have been considered. Different criteria have been applied in order to identify crystallites produced during annealing. During the first stages of annealing, a network of grain boundaries with misorientations higher than 10 deg is produced, mainly inside the deformed γ-fiber grains. The crystallites formed within this network, free from cells or subgrains at their interiors, can be considered as potential nuclei. However, among all, only some of them become effective due to an important selection. The {111} recrystallized grains have a significant size and number advantage as compared with other texture components, and a hard impingement between clusters of {111} grains is produced during grain growth. The effect of grain growth behind the recrystallization front seems to be negligible as compared with the grain coarsening produced by the migration of this front, driven by the cold-work stored energy.  相似文献   

3.
The present work concentrates on the application of orientation imaging microscopy (OIM) based on the electron backscattered diffraction (EBSD) technique to the investigation of the microstructural evolution of an extra-low carbon (ELC) steel and a Ti-Nb-bearing interstitial-free (IF) steel, during continuous annealing. Aspects like the nucleation, the evolution of the recrystallized volume fraction and grain size of grains with different orientations, the interface area limiting recrystallized {111} regions, and the apparent growth rates have been considered. Different criteria have been applied in order to identify crystallites produced during annealing. During the first stages of annealing, a network of grain boundaries with misorientations higher than 10 deg is produced, mainly inside the deformed γ-fiber grains. The crystallites formed within this network, free from cells or subgrains at their interiors, can be considered as potential nuclei. However, among all, only some of them become effective due to an improtant selection. The {111} recrystallized grains have a significant size and number advantage as compared with other texture components, and a hard impingement between clusters of {111} grians is produced during grain growth. The effect of grain growth behind the recrystallization front seems to be negligible as compared with the grain coarsening produced by the migration of this front, driven by the cold-work stored energy. J.L. Bocos, formerly Researcher with CEIT  相似文献   

4.
A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.  相似文献   

5.
蒋虽合  毛卫民  杨平  叶丰 《工程科学学报》2014,36(12):1643-1649
用电子背散射技术观察了700℃温轧板在退火过程中的组织及织构演变以了解其再结晶行为.结果表明,温轧织构由强的(111)〈112〉、较弱的〈110〉∥RD及Goss组成,再结晶织构与之相似.〈110〉∥RD及(111)〈112〉新晶粒首先形成于与之构成小角度晶界的形变晶粒的晶界附近,而在角隅及组织不均匀区等位置孕育出与周围晶粒构成大角度晶界的晶核,择优取向不明显.退火过程中(111)〈112〉在形变组织中累积,最终转化为(111)〈112〉再结晶晶粒.分析认为,温轧后退火是不均匀组织在低储存能驱动下的再结晶过程.(112)〈110〉及(111)〈112〉形变拉长晶粒多发生连续再结晶从而退火织构与形变态相似.在角隅区形成核心进而发生不连续再结晶,核心取向的统计性及不连续晶核的长大弱化再结晶织构,其中Goss晶粒多以此方式形成于(111)〈112〉晶粒内部.  相似文献   

6.

In the present study, Nb-stabilized ferritic stainless steel was prepared with annealing (430-A) and without annealing (430-NA) annealing, and the microstructure of the resulting samples was examined. The steel was then subjected to cold rolling and isothermal annealing in order to analyze its recrystallization kinetics and texture evolution. Microstructural characterization was performed by scanning and transmission electron microscopies. Recrystallization kinetics were evaluated by measuring the microhardness of the samples, and analyzing their kernel average misorientation and grain orientation spread via electron backscatter diffraction. The Avrami exponent data revealed that one-dimensional grain growth occurred owing to the migration of high-angle grain boundaries. The mean activation energies for recrystallization for 430-NA and 430-A was found to be 365 and 419 kJ mol−1, respectively. The recrystallization texture was influenced by oriented nucleation and selected growth mechanisms, as well as by the Nb carbonitride distribution and grain boundary energy. The recrystallized and growing grains with the {554}〈225〉 orientation showed a dimensional advantage over the other recrystallized components. The coincident site lattice boundaries were attributed to the progression of recrystallization since the CSL numeric fraction increased as the temperature increased. The {554}〈225〉 component was associated with the ∑19a boundary, which exerted a significant control on the selective growth during the recrystallization.

  相似文献   

7.
研究了MgO涂层对Hi-B钢高温退火过程中组织织构与抑制剂的影响。借助磁性能测试仪测试其磁性能,使用金相显微镜(OM)观察试样组织,借助扫描电子显微镜(SEM)和EBSD技术进行抑制剂观察和织构检测,利用投射电子显微镜(TEM)及能谱仪(EDS)进行能谱分析。结果表明:氧化镁涂层能延缓抑制剂粒子的分解,保持较高的粒子分布密度,进而抑制初次再结晶晶粒的粗化,提高二次再结晶的开始温度。另一方面涂层能影响二次再结晶过程。无涂层样品与氢气直接接触,较多接近{110}面织构而与〈001〉晶向偏差较大的晶粒发生了异常长大,导致二次再结晶晶粒数量更多,尺寸更小且Goss织构比较散漫。有涂层样品Goss织构更加锋锐且磁性能更优。  相似文献   

8.
The evolution of recrystallization and recrystallization texture during annealing after cold rolling of a continuous-cast (CC) AA 3015 aluminum alloy with and without pretreatment was investigated in detail. It was found that the preheat treatment prior to cold rolling significantly affected the recrystallization kinetics, the shape and size of recrystallized grains, and the resulting texture of the CC AA 3015 aluminum alloy. In the case of the alloy without pretreatment, annealing at low temperatures resulted in coarse elongated recrystallized grains and a very strong P texture. As the annealing temperature increased, the size of the recrystallized grains dramatically decreased, the recrystallized grains became equiaxed, and the strength of the P texture decreased. The transition behavior could be attributed to the effect of Zener-particle pinning caused by concurrent precipitation. In contrast, the recrystallization texture of the CC AA 3015 aluminum alloy with pretreatment was characterized by a major cube component and a minor R component, and the annealing temperature did not affect the recrystallization texture. Moreover, concurrent precipitation retarded markedly the recrystallization of the CC AA 3015 aluminum alloy, decreased the Johnson-Mehl-Avrami-Kolmogorov (JMAK) exponent from 2.0 to 0.5, and increased the activation energy for recrystallization from 225 to 539 kJ/mol.  相似文献   

9.
W. Mao  W. Guo  Y. Li 《国际钢铁研究》2010,81(12):1117-1120
The coarsening behaviour of Goss grains in grain oriented electrical steel during annealing after cold rolling was investigated. The results show that the coarsening resistance of fine second phase particles was reduced inside the surface grains. This induced particle coarsening and the reduction of particle density. The reduction of particle density was grain orientation dependent because of the elastic anisotropy of ferrite. Experimental results also revealed that some small surface Goss grains exhibited higher particle density than their neighbouring grains. This may account for the higher coarsening resistance of fine particles and be responsible for the stronger pinning effect on the migration of grain boundaries. Therefore, these Goss grains may have grown at the expense of smaller neighbouring grains and most were very unlikely to be consumed by large neighbouring grains during secondary recrystallization annealing. When their sizes became even larger, they consumed the large grains in turn and consequently formed a strong Goss texture.  相似文献   

10.
The recrystallization behavior of the 21 columnar grains in an Fe-36%Ni austenitic (f.c.c.) alloy during annealing at 973 K after 70% cold-rolling, whose rolling behavior had been studied in the coupled paper, has been studied with emphasis on the effect of the initial orientation. The recrystallization rate and the recrystallized grain size of the columnar-crystal specimen were hardly dependent on the initial orientation. This result is in contrast to that reported in the Fe-19%Cr (b.c.c.) columnar crystals. The reason for this difference was discussed in connection with the easiness of cross-slip in the two alloys. On the other hand, the orientation of recrystallized grains was dependent on the initial orientation. The columnar-crystal specimen showed the (001)〈310〉 recrystallization texture. The (001)〈310〉 recrystallized grains preferentially appeared from the shear bands which formed in the (001)[110] initially oriented columnar grains. TEM observation showed that some elongated cells within the shear bands have the (001)〈310〉 orientation in the as-rolled state.  相似文献   

11.
The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot band displayed a highly elongated ribbon-like structure and a pronounced deformation texture.The fully recrystallized grains were observed after continuous annealing while the "typical" hot rolled structure was remained after batch annealing.Also,the α-fibre texture formed during hot rolling almost disappeared after continuous annealing and a weak γ-fibre texture was obtained.By contract,the α-fibre texture remained very stable after batch annealing.After cold rolling and recrystallization annealing,the favorable γ-fibre texture was achieved in the continuous annealed steel.Instead of forming the γ-fibre texture,the recrystallization texture was notably shifted toward {223}582 in the batch annealed steel.Finally,the improvement in drawability with high r-value and low Δr-value were also displayed in sheet through the initial continuous annealing process.  相似文献   

12.
Secondary recrystallization behavior in the presence of AlN and MnS precipitates in Fe-3% Si alloy, processed by one stage cold rolling method, was investigated with special reference to a role of inhibitor for secondary recrystallization. The sharpness of Goss secondary texture is higher in the early stage of secondary recrystallization. In the case of stronger grain growth inhibition by precipitates during secondary recrystallization, the evolution of secondary recrystallized grains in orientations dispersed from Goss orientation is smaller than that in the case of weaker grain growth inhibition. The mechanism of these experimental results is explained by the specific grain boundary migration characteristics in the presence of inhibitor, namely, the critical frequency of Σ9 coincidence oriented grains in relation to nucleus for the evolution of secondary recrystallization is considered to be higher in the case of stronger grain growth inhibition during secondary recrystallization.  相似文献   

13.
Microstructure and texture evolution of Al during hot and cold rolling   总被引:2,自引:0,他引:2  
The evolution of microstructure and texture of commercial purity Al during hot and cold rolling has been studied. The results show that the dynamic restoration mechanism for Al rolled to a total equivalent strain of 2.66 at a mean equivalent strain rate of 14.4 s-1 at 510 °C is essentially dynamic recrystallization (DRX), whereas for those materials deformed to lower strains at lower strain rates at this temperature, the restoration mechanism is mainly dynamic recovery (DRV). This is confirmed by examining the microstructures, textures, and substructures of the material developed during hot rolling as well as by comparing the results with those developed during cold rolling and annealing. The texture analysis using orientation distribution functions (ODFs) indicates that the dynamically recrystallized material has a random orientation distribution, whereas dynamically recovered materials have a developed deformation texture with a predominantD component and a Cu component. The substructure observation by transmission electron microscopy (TEM) indicates that the subgrains in the dynamically recrystallized material are completely dynamically recovered, which is very similar to those subgrains in cold-rolled material. However, the annealed material shows a completely different substructure. By studying all of these structural features, which are closely associated with the dynamic restoration mechanism, it is confirmed that Al undergoes DRX in the present work, which is different from either DRV or static recrystallization (SRX).  相似文献   

14.
The evolution of the microstructure and the properties of an austenitic high-manganese steel subjected to severe deformation by cold rolling and subsequent recrystallization annealing is investigated. Cold rolling is accompanied by mechanical structural twinning and shear banding. The microhardness and microstructural analysis of annealed samples are used to study the recrystallization kinetics of the high-manganese steel. It is shown that large plastic deformation and subsequent annealing result in rapid development of recrystallization processes and the formation of an ultrafine-grained structure. A completely recrystallized structure with an average grain size of 0.64 μm forms after 30-min annealing at a temperature of 550°C. No significant structural changes are observed when the annealing time increases to 18 h, which indicates stability of the recrystallized microstructure. The steel cold rolled to 90% and annealed at 550°C for 30 min demonstrates very high strength properties: the yield strength and the tensile strength achieve 650 and 850MPa, respectively. The dependence of the strength properties of the steel on the grain size formed after rolling and recrystallization annealing is described by the Hall–Petch relation.  相似文献   

15.
《Acta Metallurgica》1985,33(12):2155-2162
The recrystallization process in heavily deformed commercially pure aluminium containing large intermetallic particles was studied by in situ neutron diffraction texture measurements and various microscopical techniques including texture measurements in local areas and simultaneous determination of size and orientation of individual grains. The formation and growth of recrystallization nuclei at the particles and in the matrix were examined by correlating the measured change in texture to the observed change in microstructure. It was found that prolific nucleation of grains having a wide spread of orientations takes place close to larger particles or clusters of particles early in the recrystallization process. The texture of fully recrystallized material, however, contains only a relatively weak random component showing that the randomisation effect of the particles was limited. This was ascribed to a slower growth of randomly oriented grains compared with those with other orientations.  相似文献   

16.

The effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.

  相似文献   

17.
The origin of the γ fiber recrystallization texture in interstitial-free (IF) steel developed during continuous annealing has been investigated by scanning electron microscopy (SEM) and orientation imaging microscopy (OIM). Nucleation of {111} «uvw» oriented crystals occurs in deformation banded γ grains and therefore a comprehensive study of microstructure of cold-rolled IF steel in the sections perpendicular to the rolling and transverse directions (TDs) and the rolling plane (RP) has been carried out to understand the formation, geometry, and microstructural features of recrystallization. The RP section gave abundant evidence of orientation gradients formed in γ oriented grains that had been subject to orientation splitting to give deformation bands. These orientation gradients across a single grain are around 5 to 30 deg and this orientation difference is sufficient to form nuclei with mobile interfaces during annealing and hence to create chains of γ oriented new grains in the original hot band γ grain envelopes. A grain impingement model requiring orientation pinning is then proposed to explain how these grains, contained in deformed γ grain envelopes, grow out into their neighbors to dominate the final recrystallization texture of IF steel. The α deformed grains contain only small lattice curvatures, and therefore in-grain nucleation is rare. These grains are mostly consumed by invading γ grains toward the end of the recrystallization process.  相似文献   

18.
低温加热渗氮型取向硅钢二次再结晶完全、磁性能却不高是一种常见的现场质量问题,其成因的判断及问题的解决对降低生产成本至关重要。本文对两组企业生产中存在上述现象的低温渗氮钢的一次再结晶板进行高温退火中断实验,确定其二次再结晶温度及基体晶粒和二次晶粒的取向分布特征,探索其成因。结果表明,磁性能下降的原因是二次晶粒取向度偏差大,主要向{110}<227>取向偏转;其本质是一次晶粒尺寸偏小,二次再结晶温度提前了约50 ℃;高斯晶粒以外的偏高斯取向晶粒优先形成。两组样品的差异不在于其二次再结晶温度不同,而是二次晶粒的偏差度不同。这种差异又反映出两组样品微小的一次退火组织织构和抑制剂的差异或成分波动性。  相似文献   

19.
Superalloys are being employed in more extreme conditions requiring higher strength, which requires producers to forge products to finer grain sizes with less grain size variability. To assess grain size, crystallographic texture, and substructure as a function of forging conditions, frictionless uniaxial compression testing characteristic of hot working was performed on INCOLOY 945 (Special Metals Corporation, Huntington, WV), which is a newly developed hybrid of alloys 718 and 925, over a range of temperatures and strain rates. The microstructure and texture were investigated comprehensively using light optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into microstructure evolution mechanisms. Dynamic recrystallization, nucleated by grain/twin boundary bulging with occasional subgrain rotation, was found to be a dominant mechanism for grain refinement in INCOLOY 945. At higher strain rates, static recrystallization occurred by grain boundary migration. During deformation, duplex slip along {111} planes occurred until a stable 〈110〉 fiber compression texture was established. Recrystallization textures were mostly random but shifted toward the compression texture with subsequent deformation. An exception occurred at 1423 K (1150 °C) and 0.001 seconds−1, the condition with the largest fraction of recrystallized grains, where a 〈100〉 fiber texture developed, which may be indicative of preferential growth of specific grain orientations.  相似文献   

20.
Commercial-purity aluminum, AA1200, was cold-rolled to a true thickness strain of 2 and annealed at low temperatures. The microstructural evolution and the changes of the rolling, cube, Goss, and other texture components were characterized thoroughly by transmission electron microscopy. Both the deformation microstructure and the annealing behavior were found to be texture dependent. In the deformed structure, texture components other than the rolling, cube, and Goss showed a broader orientation spread as well as a larger content of stored energy. Structural coarsening took place during the annealing and depended on the local texture environment. Other texture components showed more pronounced coarsening than the rolling components. The orientational heterogeneity in the deformed structure influenced the heterogeneous structural coarsening during the recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号