首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The theoretical foundation of a micromechanical model that accounts for the fatigue crack growth threshold conditions at notches was described in Part I of this study. Strictly speaking, the proposed formulation is restricted to the analysis of a component with an elliptical notch under antiplane stress. In this section of the study, the expressions derived in Part I are generalized for application to axial stress states and non-elliptical notch geometries. The procedure is validated by comparing the model's predictions with reported experimental results.  相似文献   

3.
The present work shows the application to small notches of a micromechanical model which describes the growth of a short crack across the steep stress gradient generated at the root of a notch. The model, based on the theory of distributed dislocations, takes into account the interaction between short cracks and material barriers such as grain boundaries. The term ‘small notches’ refers in this paper to stress raisers the size of which is of the same order as the characteristic microstructural unit of the material. Typical examples are superficial scratches, corrosion pits, inclusions or pores. Comparisons between predicted fatigue limits and experimental results reported in the literature for different materials containing small artificial defects are shown and discussed.  相似文献   

4.
The T-stress is increasingly being recognized as an important additional stress field characterizing parameter in the analyses of cracked bodies. Using T-stress as the constraint parameter, the framework of failure assessments including the constraint effect has been established; and the effect of T-stress on fatigue crack propagation rate has been investigated by several researchers. In this paper, a simple method for determining the T-stress for small notch-emanating cracks is presented. First, the background on the T-stress calculation using the superposition principle and the similarities between the elastic notch-tip stress fields described by two parameters: the stress concentration factor (Kt) and the notch-tip radius (ρ), are summarized. Then, the method of estimating T-stress for both short and long cracks at the notches is presented. The method is used to predict T-stress solutions for cracks emanating from an internal hole in a wide plate, and cracks emanating from an U-shaped edge notch in a finite thickness plate. The results are compared to the T-stress results in the literature, and the T-stresses solutions obtained from finite element analysis. Excellent agreements have been achieved for small cracks. The method presented here can be used for a variety of notch crack geometries and loading conditions.  相似文献   

5.
动荷载作用下含裂缝公路结构体的应力强度因子   总被引:10,自引:0,他引:10  
以沈阳-大连高速公路为工程背景,基于弹性动力学理论,采用平面应变有限单元法,分析了车辆荷载对含裂缝路面体的动态作用,分析过程中,车辆荷载简化为正弦分布柔性荷载;路面结构体计算模型抽象为平面应变模型;路面结构体为弹性的连续介质,为了反映裂尖应力,位移场的奇异性和减少模型网格数,在裂尖环向设置了奇异单元。通过计算得到裂尖的位移场,由位移外插得到I-型应力强度因子随加载时间的变化规律。同时探讨了初始裂缝长度和公路结构材料阻尼比的变化对I-型应力强度因子分布规律的影响,为路面体的动态破坏研究提供了一定的理论参考。  相似文献   

6.
In this study a threshold for fatigue crack propagation as a function of crack length is defined from a depth given by the position d of the strongest microstructural barrier to crack propagation, which defines the plain fatigue limit. The material threshold is estimated from the plain fatigue limit ΔσeR, the position d of the strongest microstructural barrier and the threshold for long cracks, ΔKthR. The threshold for eight different materials for which experimental results can be obtained from the literature was estimated. Good agreement was observed in all cases. Some quantitative analyses of the fatigue propagation behavior of short cracks are carried out and discussed.  相似文献   

7.
A new resistance-curve method was proposed for predicting the growth threshold of short fatigue cracks near the notch root. The resistance curve was constructed in terms of the experimentally determined threshold value of the maximum stress intensity factor which was the sum of the threshold effective stress intensity range ΔKeffth and the opening stress intensity factor Kopth The ΔKeffth value was constant, irrespective of crack length or notch geometry. The relation between Kopth and crack length was independent of notch geometry. The predicted effects of the notch-root radius and the notch depth on the propagation threshold of short fatigue cracks were compared with the experimental data obtained using center-notched specimens with various notch-root radii and single-edge notched specimens with various notch depths. Excellent agreement was obtained between predictions and experiments.  相似文献   

8.
9.
Fatigue behaviour of AISI 310 stainless steel has been investigated up to very high cycles. The fatigue crack initiation sites were found at the surface of the material. Persistent slip bands developed at the surface of the specimens led to the crack initiation. At lower stress levels, shallow persistent slip bands were found at the surface of the specimens, and the fatigue limit was obtained. Notched specimens showed lower fatigue lives. Notched specimens with higher stress concentration factor (Kt) showed higher fatigue strength reduction factor (Kf). It was found that shallow notches of depth ~100 µm may reduce the fatigue life substantially.  相似文献   

10.
Geometrical discontinuities such as notches need to be carefully analysed by engineers because of the stress concentration generated by them. Notches become even more important when the component is subjected, in service, to very severe conditions, such as high‐temperature fatigue and imposed viscoplastic behaviour such as creep. The knowledge of strains and stresses in such stress concentration zones is essential for an efficient and safe design process. The aim of the paper is to present an improvement and extension of the existing notch‐tip creep stress–strain analysis method developed by Nuñez and Glinka, validated for U‐notches only, to a wide variety of blunt V‐notches. The key in obtaining the extension to blunt V‐notches is the substitution of the Creager–Paris equations with the more generalized Lazzarin–Tovo solution, allowing a unified approach to the evaluation of linear elastic stress fields in the neighbourhood of both cracks and notches. Numerous examples have been analysed to date, and the stress fields obtained according to the proposed method were compared with appropriate finite element data, resulting in a very good agreement. In view of the promising results discussed in the paper, authors are considering possible further extension to sharp V‐notches and cracks introducing the concept of the strain energy density.  相似文献   

11.
Results of an experimental investigation of the fatigue growth of small corner cracks emanating from small flaws are presented. A three-point bending state of loading was used and, by virtue of the orientation of the square cross-section of the specimen, the maximum tensile stress was developed at the middle of the gage section and on a corner edge. A growth-arrest behavior was observed and increases in crack length during growth periods were of the order of the transverse grain size, so it is inferred that grain boundaries act as barriers to continuing growth.  相似文献   

12.
As it is well known the Poisson's effect in a cracked plate subjected to anti‐symmetric plane loading leads to the generation of a coupled out‐of‐plane singular mode. Recent theoretical and numerical analyses have shown that this effect is present also in plates weakened by sharp V‐notches and might play a role in failure initiation phenomena of notched plates subjected to Mode II loading, especially in the presence of a large notch opening angle. Dealing with blunt notches with a large notch radius, and not just with sharp notches, the presence or not of an out‐of‐plane mode does not appear to have been systematically investigated in the past. The main aim of this work is to confirm the existence of the stress field associated with the out‐of‐plane mode (Mode O) and to describe its main features in the presence of a notch radius significantly different from zero. The analyses include U‐notches, as well as circular and elliptic holes. The strain energy density in a 3D control volume is utilized to identify the most critical zone (with respect to failure initiation) through the plate thickness at the notch tip.  相似文献   

13.
This review is a brief survey of three‐dimensional effects at cracks and sharp notches. The overall aim is to review developments over the past 50 years leading up to the current state of the art. The review is restricted to linear elastic, homogeneous, isotropic materials, with any yielding confined to a small region at a crack or notch tip. It is also restricted to static loading and to constant amplitude fatigue loading. An enormous amount of theoretical and experimental information relevant to three‐dimensional effects has been published in the past five decades, so the review is, of necessity, highly selective. Theoretical topics covered are linear elastic fracture mechanics, including Volterra distorsioni, stress intensity factors, corner point singularities, crack front line tension, displacement analysis of cracks and notches, and through thickness distributions of stresses and stress intensity factors. Crack path topics covered are fatigue crack path constraints, determination of fatigue crack paths, oscillating crack fronts in thin sheets and the transition to slant crack propagation in thin sheets. Plane strain fracture toughness testing, including standards, is covered. Overall, it can be concluded that the existence of three‐dimensional effects at cracks and sharp notches has been known for many years, but understanding has been limited, and for some situations still is. Understanding improved when the existence of corner point singularities and their implications became known. Increasingly powerful computers made it possible to investigate three‐dimensional effects numerically in detail. Despite increased understanding, three‐dimensional effects are sometimes ignored in situations where they may be important.  相似文献   

14.
Abstract

The management of cracks and defects in engineering equipment is becoming an increasingly important decision that plant engineers and management are faced with. As plant equipment ages, an increasingly significant problem is reliability. By early detection and assessment, cracks can be monitored and repaired if it is required to do so. This paper provides an overview of the general technique that is employed in the evaluation of defects or cracks, whether real or postulated, in plant equipment. Also included is a brief outline of assessments of defects along with various case studies.  相似文献   

15.
This paper presents stress intensity factor (SIF) solutions for edge cracks emanating from semicircular notches using the composition of SIF weight functions. The method isolates and combines the geometrical influences defined by constitutive SIF weight functions to yield SIFs for semicircular notches in finite thickness bodies. Finite element analysis was employed to obtain the required stress distributions and to generate reference constitutive SIFs. Problems encountered with curve fitting high gradient stress distributions were addressed and a robust mathematical solution for these was formulated. The new SIF solutions were verified by comparison with published solutions showing a high degree of accuracy and reliability. The composition model was demonstrated to allow rapid generation of SIFs for mode I cracks in complex geometries where the relevant simple constitutive solutions are available. These new solutions expressed as SIF weight functions allow interpolation between the geometrical parameters for which they are valid and also to include the effect of complex stress distributions such as those due to residual stresses.  相似文献   

16.
17.
The relation is studied between crack initiation from micro‐notches in a fully lamellar intermetallic γ‐TiAl alloy and the local strain field. These micro‐notches were introduced using femtosecond‐laser ablation and had dimensions below the average colony size. The specimen under investigation was then subjected to fatigue loading. Continuous monitoring using a travelling optical microscope allowed detecting microcracks at an early stage. Prior to fatigue loading, a sustained load was applied and the local strain field was determined using digital image correlation. This was supplemented by a Finite Element analysis of the notches and their neighbourhood. It was found that a crack was initiated from a notch causing high normal strains in lamella direction, whereas no crack was initiated from notches with high shear strains.  相似文献   

18.
The Frost–Dugdale plot is re‐examined and the subject of the non‐propagation of fatigue cracks is updated to emphasize that fatigue crack closure is the principal factor responsible for the non‐propagation of fatigue cracks which originate at notches. The limitations of the original Frost–Dugdale plot with respect to notch depth are also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号