首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
反硝化过程中亚硝酸盐积累特性分析   总被引:4,自引:0,他引:4       下载免费PDF全文
在分段进水工艺处理城市废水实现深度脱氮(TN〈5 mg.L-1)研究中,采用SBR反应器,分别以甲醇或葡萄糖为碳源研究了反硝化过程中亚硝酸盐(NO2--N)的积累情况、pH和ORP变化规律及动力学特性。结果表明,2种碳源系统、不同碳氮比(C/N)条件下反硝化过程均出现明显的NO2--N积累。相同C/N下,在NO2--N积累阶段,葡萄糖碳源系统的NO2--N积累浓度明显大于甲醇碳源,但2种碳源的NO3--N还原速率均大于NO2--N还原速率,且随C/N增加NO2--N的积累浓度逐渐增加,积累时间逐渐缩短。而高C/N下葡萄糖碳源的NO3--N还原速率及NO2--N积累浓度却呈现出下降的趋势。此外,pH和ORP变化规律可很好地表征反硝化过程中NO2--N积累的特征点,通过pH和ORP曲线的第2个拐点可指示反硝化过程的"真正"结束。  相似文献   

2.
碳氮比对生物反硝化中N_2O产量的影响   总被引:1,自引:0,他引:1  
利用间歇式反应器(sequencing batch reactor,SBR),以乙醇作为外加碳源,考察不同化学需氧量(chemicaloxygen demand,COD)与氮的质量浓度的比值对全程和短程反硝化脱氮过程中N2O产量的影响.全程反硝化过程中,调节ρ(COD)/ρ(N)为1.56、2.83、4.56、6.01和10.0,短程反硝化中调节ρ(COD)/ρ(N)为1.51、2.45、3.33、4.13和9.7.结果表明,全程和短程反硝化的最佳ρ(COD)/ρ(N)分别为6.01和4.13,硝酸盐和亚硝酸盐完全被还原,反硝化过程中几乎没有N2O产生,1 g混合液悬浮固体(mixed liquor suspended solids,MLSS)每天还原的硝态氮和亚硝态氮分别可达0.077和0.089 g.在碳源充足的条件下,反硝化速率不再随着有机物的增加而增加.在低ρ(COD)/ρ(N)时,短程反硝化过程中N2O产量远大于全程反硝化过程,最高可达0.607 mg/L.在碳源不足时,亚硝酸盐对氧化亚氮还原酶(N2O reductase,N2OR)的抑制作用和ρ(COD)/ρ(N)不足是影响系统N2O产量增加的主要原因.  相似文献   

3.
为了探讨碳氮比(ρ(C)/ρ(N))在反硝化过程中对于亚氮积累的影响,采用乙酸钠为碳源,在序批式实验中,通过控制进水碳氮比来研究反硝化包埋颗粒在反应过程中亚硝态氮积累的现象.实验结果表明:在反应过程中,不同的碳氮比条件下均出现亚硝态氮积累现象,且亚硝态氮积累率都表现出先升高后降低的趋势.其中,碳源充足(碳氮比为4.0~6.0)时,亚硝态氮积累率在30 min时达到最大,随后逐渐降低,反应结束时在碳氮比为4.0条件下仍有亚氮积累;当碳源不足(碳氮比为2.0~3.0)时,亚硝态氮的积累率在120 min达到最大,而后基本维持不变,说明可以通过控制碳氮比和反应时间来获得稳定的亚硝态氮积累.硝态氮和亚硝态氮的还原速率随着碳氮比的增加而逐步升高,而亚硝态氮的最大积累率与积累速率随着碳氮比的增加先升高后降低,在碳氮比为4.0时亚硝态氮的积累率和积累速率均达到最大,分别为40.8%和24.46 mg/(L·h),说明碳氮比对亚硝态氮的积累有显著影响.  相似文献   

4.
短程反硝化作为厌氧氨氧化反应基质亚硝酸盐(NO2--N)获取的新途径,近年来受到广泛关注.短程反硝化与厌氧氨氧化耦合的污水脱氮工艺具有重要应用潜力.然而,城市污水基质浓度较低且波动频繁,有效实现厌氧氨氧化菌持留与富集是该工艺稳定脱氮的关键.针对上述问题,构建了基于生物膜的短程反硝化耦合厌氧氨氧化工艺,采用2种结构不同的生物填料为载体,对比系统长期脱氮性能,重点考察氮负荷降低过程中系统氮素转化规律及菌群活性变化,深入分析生物膜胞外聚合物(extracellular polymeric substances,EPS)产生特性.结果表明,以含氨氮(NH4+-N)与硝酸盐氮(NO3--N)废水为处理对象,乙酸钠为有机碳源,分别采用聚氨酯海绵填料(R1)和聚乙烯空心环填料(R2)成功构建了短程反硝化耦合厌氧氨氧化生物膜系统.进水NH4+-N与NO3--N由150 mg/L逐渐降低至50 mg/L、氮负荷由0.6 kg/(m3·d)降为0.2 kg/(m3·d)时,R1和R2维持高效稳定脱氮,低负荷阶段平均总氮(TN)去除率分别为87.6%和83.6%.厌氧氨氧化作用始终为主要脱氮途径,其占两系统TN去除的贡献率分别高达98.2%和97.4%.生物膜短程反硝化速率随氮负荷减少而降低,但高NO2--N积累特性未受影响,R1系统NO2--N积累效率达到95.1%且高于R2(89.8%),其厌氧氨氧化活性降低程度小于R2,表明聚氨酯填料更适合低负荷下该工艺长期运行.低负荷下微生物分泌更多EPS,蛋白质含量增加有助于系统应对氮负荷变化.综上,短程反硝化耦合厌氧氨氧化生物膜工艺处理低基质废水时具有稳定高效的重要优势,为解决厌氧氨氧化应用的瓶颈问题提供了新方法,具有研究意义和应用价值.  相似文献   

5.
在SBR反应器中利用游离氨(freeammonia,FA)、游离亚硝酸(freenitrousacid,FNA)对NOB(nitriteoxidizingbacteria,NOB)选择性抑制并耦合实时控制策略处理晚期垃圾渗滤液,成功实现持久稳定的短程生物脱氮,并研究了不同碳氮比及初始PH值对短程生物脱氮的影响。结果表明:通过FA和FNA对NOB的选择性抑制,在线检测反应中PH、DO和ORP数值,利用出现的“氨谷”、“ORP平台”“亚硝酸盐膝”等特征点作为运行操作控制时间点,准确得知反应进程,及时开始下一步操作,获得稳定短程生物脱氮。进水NH4+-N浓度为108~177.3mg/L(平均值为138.7mg/L)时,亚硝积累率一直稳定达90%左右,乙酸钠为碳源时最佳C、N质量比为3,相对于混合液悬浮固体浓度的反硝化速率的平均值达到19.8mg·g-1·h-1NOx--N,出水NH3+-N、NO2--N、NO3--N、TN分别小于6、2、1和30mg/L;初始PH值为8.5时,反硝化速率最大,pH介于7.5~8.5间,反硝化速率差异小于7.3%.  相似文献   

6.
利用SBR反应器硝化结束的混合液,通过投加不同碳源量和利用内源碳源反硝化,考察了不同ρ(C)/ρ(N)对污水反硝化过程中N2O产生情况的影响.控制ρ(C)/ρ(N)分别为0、1.2、2.4、3.5、5.0和20,结果发现,不投加外碳源条件下,利用内源碳源反硝化过程反硝化率仅有10%,产生的ρ(N2O)也很低.投加外碳源控制ρ(C)/ρ(N)为1.2和2.4条件下,反硝化率分别为18.44%和33.55%,产生的ρ(N2O)同样较低,ρ(C)/ρ(N)=3.5和5.0时,反硝化率升高到了71%和91.4%,产生的ρ(N2O)也升高到0.227 mg/L和0.135 mg/L,是不加外碳源时产生量的30倍和18倍.继续提高ρ(C)/ρ(N)到20,发现反硝化率可以达到99.29%,产生的ρ(N2O)增高到了0.317 mg/L.可见,在污水反硝化过程中,虽然ρ(C)/ρ(N)过低产生的ρ(N2O)很少,但严重影响反硝化效果,要得到较高的反硝化率,需要较高的ρ(C)/ρ(N),但是ρ(C)/ρ(N)较低和过高时都会产生较高的ρ(N2O),所以,污水反硝化过程中应该控制ρ(C)/ρ(N)在5左右,既可以实现较高的反硝化氮去除率,又可减少ρ(N2O)的产生.  相似文献   

7.
采用葡萄糖和乙酸钠对反硝化污泥进行200 d的驯化培养后,通过批次试验研究不同碳源对反硝化过程中亚硝酸盐积累的影响。研究结果表明:采用葡萄糖培养的反硝化污泥以葡萄糖为碳源,反硝化过程中亚硝酸盐积累浓度较低;n(C)/n(N)为5时,NO-2-N最大积累浓度仅为13.79 mg·L-1,最大NO-2-N积累率为31.20%。采用乙酸钠培养的反硝化污泥以乙酸钠为碳源,反硝化过程中亚硝酸盐能快速积累,且积累浓度较高;n(C)/n(N)为3,反应至120 min时NO-2-N积累浓度为37.86 mg·L-1,NO-2-N积累率达到72.48%;该污泥以葡萄糖为碳源,反硝化过程中亚硝酸盐积累浓度也较高;n(C)/n(N)为3,反应至240 min时,NO-2-N积累浓度为24.41 mg·L-1,最大NO  相似文献   

8.
污泥发酵液为碳源的反硝化过程亚硝酸盐积累   总被引:2,自引:0,他引:2  
以污泥发酵液为碳源,通过批次试验研究了不同溶解性有机物的质量浓度与硝酸盐氮质量浓度之比(ρ(SCOD)/ρ(NO-3-N))和分次投加碳源时反硝化过程亚硝酸盐的积累特性.试验结果表明:不同ρ(SCOD)/ρ(NO-3-N)条件下NO-2-N都得到积累;ρ(SCOD)/ρ(NO-3-N)<4时,NO-2-N的最大积累质量浓度和积累速率随着ρ(SCOD)/ρ(NO-3-N)的增加而增大,分别达12.83 mg/L和0.107 mg/(L·min).分次投加发酵液与1次投加发酵液相比,NO-2-N的最大积累质量浓度相差很小,但分次投加能保持稳定的NO-2-N积累.另外,以污泥发酵液为碳源的反硝化过程,反硝化过程NO-2-N的积累和发酵液的低pH导致N2O的释放与ρ(SCOD)/ρ(NO-3-N)成正相关.因此,在构建反硝化耦合厌氧氨氧化系统时,分次投加发酵液具有很大优势,不仅可产生稳定的NO-2-N积累,弱化有机物对厌氧氨氧化菌的抑制作用,还可减少N2O的释放.  相似文献   

9.
萃取膜生物反应器去除地下水硝酸盐   总被引:1,自引:0,他引:1  
地下水硝态氮(NO3--N)污染已成为世界性的环境问题,而且污染日趋严重,成为饮用水净化的难题之一.本研究采用中空纤维萃取膜生物反应器进行反硝化去除地下水中的硝酸盐,该反应器反硝化区与产品水分离、出水不受微生物污染,而且扩散速率快、硝酸盐去除速率快.试验装置设两级反应器,其中,一级反应器主要起预处理作用,去除地下水中溶解氧,为二级反应器内的反硝化细菌提供良好的生长环境.本试验整个系统硝态氮去除速率达到了3.36 g.m-2.d-1,相应的出水硝态氮浓度为9.76 mg.L-1,二级反应器硝态氮去除速率达到5.46 g.m-2.d-1,一级反应器硝态氮最大去除速率为0.4 g.m-2.d-1左右.  相似文献   

10.
SBR工艺硝化脱氮过程研究   总被引:2,自引:0,他引:2  
SBR法脱氮,硝化过程中碳氮比和温度对氨态、硝态、亚硝态氮的平衡和转化关系极其重要.人工配制固定浓度碳源、不同浓度水平氨氮废水的SBR工艺硝化实验表明:氨氮降解明显地分为两个阶段;进水氨氮浓度越高,氨氮自养硝化阶段降解速率越快,亚硝酸盐氮生成速率也越快.对不同温度硝化过程中亚硝酸盐氮进行研究,结果表明,在中温(20~30℃)下,通过调整pH值,亚硝酸盐氮不仅可以实现累积,而且温度越高,亚硝酸盐氮累积速率越快.  相似文献   

11.
在(19±1)℃条件下,采用SBR工艺处理低碳氮比实际生活污水,没有外加有机碳源,通过限氧曝气实现了亚硝酸型同步硝化反硝化生物脱氮(simultaneous nitrification denitrification via nitrite,亚硝酸型SND).试验结果表明,较长污泥龄下(50~66 d),通过控制曝气量使系统溶解氧处于较低水平,好氧末端ρDO2.0 mg/L,平均ρDO≈0.65 mg/L,不仅可在常温条件下实现短程硝化,ρ(NO2--N)/ρ(NOx--N)稳定在95%以上,而且可同时在该好氧硝化系统中获得高效的反硝化效果,稳定运行后,经亚硝酸型SND途径的总氮去除率(ESND)平均为52%,最高可以达到63.1%.试验分析表明,低ρDO水平是实现亚硝酸型SND的关键因素,通过低ρDO影响硝化菌群的构成、反硝化菌的缺氧微环境以及有机物和ρ(NH4+-N)的降解特性,促进了亚硝酸型SND的形成.  相似文献   

12.
在一个SBR反应器中研究了反硝化过程中的亚硝酸盐积累现象。在低的pH和低C/N比(3和2.5)条件下有较明显的积累。pH为5.8左右有利于反硝化过程的亚硝酸盐积累。C/N比为3时,获得的亚硝酸盐积累率最大可达45%。虽然C/N比为2.5时的亚硝酸盐积累率降为37%,但其碳源药剂费用少,并且其出水COD浓度低,可减少后续处理费用。在C/N比为2.5时,硝酸盐降解速率、亚硝酸盐积累速率和亚硝酸盐降解速率随着初始硝酸盐浓度的增大而增大,最高分别达60.02、36.27、10.376 mg.N/(L.h)。而硝酸盐初始浓度40 mg.N/L以上时,对亚硝酸盐的积累率影响不大,为47.5%左右。  相似文献   

13.
The objective of this work is to verify a hypothesis that nitrite accumulation comes from the metabolites of denitrification phosphate accumulating organisms (DPAOs),not denitrifying bacteria.On the precondition of the restriction of denitrifying bacteria in anoxic phase,static experimental test was designed using NO3-as electron acceptor,effluent was removed after sedimentation in anaerobic phase,and the same concentration solution of PO43--P was returned,so that TOC was excluded and denitrification was inhibited in the next phases.A parallel experiment was carried out simultaneously with the normal anaerobic-anoxic progress.The results showed that,in static test,by keeping the normal growth of DPAO and inhibiting denitrification of denitrifying bacteria,P-release in anaerobic and P-uptake in anoxic phase proceeded normally.DPAO had obvious effect on P-removal and the P-removal efficiency was 69%.The effluent concentration of NO3--N and NO2--N was 7.62 mg/L and 6.05 mg/L respectively,compared with parallel experiments,and nitrogen removal rate was lower.No nitrite residue was found in parallel test.Therefore,it can confirm the hypothesis that the metabolites of DPAO are both nitrogen and nitrite when nitrate is taken as electron acceptor,and nitrite is subsequently converted to nitrogen by denitrifying bacteria.  相似文献   

14.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

15.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

16.
常温短程内源反硝化生物脱氮   总被引:2,自引:1,他引:1  
为了确定短程内源反硝化的特性及其影响因素,采用SBR反应器,在20℃下,对以NO3-和NO2-为电子受体的内源反硝化脱氮状况进行了对比,并对不同污泥浓度下的短程内源反硝化速率进行了研究.结果表明,短程内源反硝化速率约为全程内源反硝化速率的1.6倍;污泥浓度从4g/L变化到12g/L时,短程内源反硝化速率平均值从0.026/d增加到0.038/d;短程内源反硝化间歇运行9个周期后,活性污泥的ρ(VSS)降低约16%,反硝化速率则降低了49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号