首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was performed to reduce the CdS film thickness in CdTe thin film solar cells to minimize losses in quantum efficiency. Using close space sublimation deposition for CdS and CdTe a maximum efficiency of ~ 9.5% was obtained with the standard CdS film thickness of ~ 160 nm. Reduction of the film CdS thickness to less than 100 nm leads to poor cell performance with ~ 5% efficiency, mainly due to a lower open circuit voltage. An alternative approach has been tested to reduce the CdS film thickness (~ 80 nm) by depositing a CdS double layer. The first CdS layer was deposited at high substrate temperature in the range of 520-540 °C and the second CdS layer was deposited at low substrate temperature of ~ 250 °C. The cell prepared using a CdS double layer show better performance with cell efficiency over 10%. Quantum efficiency measurement confirmed that the improvement in the device performance is due to the reduction in CdS film thickness. The effect of double layer structure on cell performance is also observed with chemical bath deposited CdS using fluorine doped SnO2 as substrate.  相似文献   

2.
Cu diffusion from a ZnTe:Cu contact interface can increase the net acceptor concentration in the CdTe layer of a CdS/CdTe photovoltaic solar cell. This reduces the space-charge width (Wd) of the junction and enhances current collection and open-circuit voltage. Here we study the effect of Cu concentration in the CdTe layer on carrier lifetime (τ) using time-resolved photoluminescence measurements of ZnTe:Cu/Ti-contacted CdTe devices. Measurements show that if the ZnTe:Cu layer thickness remains constant and contact temperature is varied, τ increases significantly above its as-deposited value when the contacting temperature is in a range that has been shown to yield high-performance devices (~ 280° to ~ 320 °C). However, when the contacting temperature is maintained near an optimum value and the ZnTe:Cu thickness is varied, τ decreases with ZnTe:Cu thickness.  相似文献   

3.
The efficiency of CdTe based solar cells is strongly enhanced by a thermal treatment in HCF2Cl ambient. CdTe thin films deposited on CdS/ZnO/ITO/glass by Closed Space Sublimation before and after the annealing are characterised. The CdTe morphology is studied by atomic force microscopy and scanning electron microscopy. In the treated films the non-homogeneous distribution of the grain size disappears, in addition an increasing of the dimensions of the grains is observed. Cathodoluminescence analyses show a remarkable difference in the spectra between the treated and untreated structures. A strong increase in the intensity of the 1.4 eV band is observed by increasing the HCF2Cl content. A model of the electronic levels inside the CdTe band gap, due to incorporation of Cl (or F) is proposed.  相似文献   

4.
Multivalent defects, e.g. double donors/acceptors or amphoteric defects, are important in materials used in solar cell production in general and in chalcopyrite materials in particular. We extended our thin film solar cell simulation software scaps to enable the simulation of multivalent defects with up to five different charge states; the algorithms presented are however able to simulate an arbitrary number of possible charge states. The presented solution method avoids numerical inaccuracies caused by the subtraction of two almost equal numbers.This new modelling facility is afterwards used to investigate the consequences of the multivalent character of defects for the simulation of chalcopyrite based solar cells.  相似文献   

5.
In order to study the microstructure of cadmium telluride (CdTe) photovoltaic thin film solar cells, manufactured by an in-line manufacturing process, Scanning Electron Microscopy characterization (SEM) and X-ray diffraction (XRD) characterization were performed. SEM measurement showed that no substantial changes in the grain structure of CdTe layers occurred during the Cadmium Chloride (CdCl2) treatment. No change in the cubic CdTe lattice parameter “a” was observed for the CdCl2 treated sample. It is inferred that the primary effect of the CdCl2 treatment in the devices studied is the passivation of grain boundaries and bulk defects. XRD studies show a loss of preferred orientation (as determined from the peak ratios) of planes during the copper compound treatment indicating recrystallization of the grains due to the Cu treatment. Also the Cu treated sample showed decrease in value of the lattice parameter “a”.  相似文献   

6.
Copper performs an important role in obtaining high-performance thin-film CdTe solar cell devices. Both initial performance and performance after stress depends strongly on the total copper content at the back-contact, the Cd to Te ratio on the backside, the etching process, and the way the copper is activated. With regard to getting high open circuit voltage a small amount of Cu seems sufficient upon the right anneal treatment. However, regarding open circuit voltage degradation for stressed devices there seems to be an optimum amount of Cu. Te-enrichment does not seem to have a big impact on device stability.  相似文献   

7.
J. Zhou  X. Wu  G. Teeter 《Thin solid films》2007,515(18):7364-7369
Material studies and device applications of CuxTe in an NREL-developed CdTe solar cell structured as glass/Cd2SnO4/ZnSnOx/CdS/CdTe are presented. The CuxTe primary back contact was formed by evaporating a Cu layer with various thicknesses at room temperature on HNO3/H3PO4 (NP) solution etched CdTe layer. A post-annealing was then followed. The structural evolution and electrical properties of CuxTe were investigated. Cu/Te ratio and post-annealing temperature are two processing parameters in this study. The CuxTe phases are mainly controlled by the Cu/Te ratio. After a post-annealing at a low temperature, such as 100 °C, no CuxTe phase transformation from its as-deposited phase was observed. A post-annealing treatment at a higher temperature, such as 250 °C, can reveal the stoichiometric CuxTe phases based on the Cu/Te ratio used in the devices. But a post-annealing at a further higher temperature, such as 400 °C, resulted in a complicated CuxTe phase appearance. CuTe, Cu1.4Te, and Cu2Te are three major phases detected by X-ray diffraction (XRD) for different Cu thickness application annealed at 250 °C. Application of Cu thicker than 60 nm degrades open-circuit voltage (Voc) and shunting resistance (Rsh), but increases series resistance (Rs). The correlation between device performance and the CuxTe back contact illustrates that the process used for forming the Cu2Te back contact failed to produce good fill factor (FF) and also introduced higher barrier height. The best device was observed for a back contact with a mixed Cu1.4Te and CuTe phases.  相似文献   

8.
Glass beads of 0.2 mm diameter are covered with molybdenum, copper and indium. The copper/indium layers are transformed into copper indium disulfide (CIS) by exposing the glass beads to a hydrogensulfide/argon mixture at temperatures of around 500 °C. The CIS covered glass beads serve as the basis material for the formation of solar cells. The main advantage of this approach is the separation between absorber and cell/module formation. In this paper the different process steps necessary for cell manufacturing are described. Some properties of solar cells made out of CIS covered glass beads are presented.  相似文献   

9.
Ultra-thin photovoltaic (PV) devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) incorporating a highly absorbing intermediate sulphurised FeSx layer into a CdS/CdTe structure. X-ray diffraction (XRD) confirmed a transitional phase change to pyrite FeS2 after post growth sulphur (S) annealing of the FeSx layer between 400 °C and 500 °C. Devices using a superstrate configuration incorporating a sulphurised or non-sulphurised FeSx layer were compared to p-n devices with only a CdS/CdTe structure. Devices with sulphurised FeSx layers performed least efficiently, even though pyrite fractions were present. Rutherford back scattering (RBS) confirmed deterioration of the CdS/FeSx interface due to S inter-diffusion during the annealing process.  相似文献   

10.
Cu used in the back contact of CdS/CdTe solar cells is known to improve contact behavior and open-circuit voltage. A study of devices made with varying Cu amounts confirmed these observations. However, Cu was also found to be deleterious to current collection. Time-resolved photoluminescence measurements of CdTe devices show that carrier lifetime decreased with increased Cu concentration. Drive-level-capacitance-profiling and low-temperature photoluminescence suggest this decrease in lifetime was associated with increased recombination center density introduced by Cu in the CdTe layer. The resulting impact of increased Cu on device performance was a voltage-dependent collection of photogenerated carriers that reduced fill-factor.  相似文献   

11.
J. Luschitz 《Thin solid films》2007,515(15):5814-5818
We have systematically investigated the growth of CdTe thin films by Close Spaced Sublimation (CSS). Thin films of CdTe were deposited onto CdS substrates held at temperatures in the range 250 to 550 °C. The effect of substrate temperature and evaporation rate on structure and surface morphology of CdTe films were investigated. Up to 450 °C substrate temperature the growth rate was almost constant and decreased exponentially for higher temperatures. The structures of the CdTe films were determined by XRD and a strong (111) orientation was observed within the temperature range 250 °C-470 °C. Above 470 °C the texture changed to mostly (311) and (220) orientations. Surface morphology and grain size of CdTe growth was determined with AFM and SEM. The morphology of the layers showed three major modes: Columnar grains with a diameter of 0.2 μm and a length of 6 μm for temperatures from 250 °C to 350 °C, pyramidal grains with a diameter of 0.5-1.5 μm up to 470°C and irregular shaped grains with a diameter of 5-10 μm for temperatures up to 550 °C. The roughness increased linearly from 15 nm to 220 nm within the substrate temperature range.  相似文献   

12.
S. Calnan  A.N. Tiwari 《Thin solid films》2010,518(7):1839-3435
A special class of transparent conducting oxides (TCO) with high mobility of > 65 cm2 V− 1 s− 1 allows film resistivity in the low 10− 4 Ω cm range and a high transparency of > 80% over a wide spectrum, from 300 nm to beyond 1500 nm. This exceptional coincidence of desirable optical and electrical properties provides opportunities to improve the performance of opto-electronic devices and opens possibilities for new applications. Strategies to attain high mobility (HM) TCO materials as well as the current status of such materials based on indium and cadmium containing oxides are presented. Various concepts used to understand the underlying mechanisms for high mobility in HMTCO films are discussed. Examples of HMTCO layers used as transparent electrodes in thin film solar cells are used to illustrate possible improvements in solar cell performance. Finally, challenges and prospects for further development of HMTCO materials are discussed.  相似文献   

13.
J. Luschitz 《Thin solid films》2009,517(7):2125-2131
The performance of CdTe solar cells as prototype of thin film solar cells strongly depends on film morphology. The needs for high solar cell performance using thin film materials will be addressed covering nucleation and growth control of thin film materials. In order to understand the basic growth mechanisms and their impact on cell performance, we have systematically investigated the growth of CdTe thin films by Close Spaced Sublimation (CSS) using the integrated ultra-high vacuum system DAISY-SOL. CdTe thin films were deposited on TCO/CdS substrates (transparent conductive oxide) held at 270 °C to 560 °C. The properties of the films were determined before and after CdCl2 treatment using X-ray diffraction and electron microscopy. In addition, solar cells were prepared to find correlations between material properties and cell efficiency. At low sample temperature the films tend to form compact layers with preferred (111) orientation which is lost at elevated temperatures above 450 °C. For CdS layers without (0001) texture there is in addition a low temperature regime (350 °C) with (111) texture loss. After activation treatment the (111) texture is lost for all deposited layers leading to strong recrystallisation of the grains. But the texture still depends on the previous growth history. The loss of (111) texture is evidently needed for higher performance. A clear correlation between cell efficiency and the texture of the CdTe film is observed.  相似文献   

14.
New hybrid organic-inorganic semiconducting systems have been developed exhibiting an interesting photoconductive behavior. The inorganic part consists of a thin film of CdSe or CdTe prepared by an electrodeposition technique. On the other hand, the organic layer, comprising of N-methyl[60]fulleropyrrolidine, is applied onto the as-plated inorganic surface by deposition from a toluene solution, followed by a mild heat treatment. The products obtained were fully characterized with XRD and SEM-EDAX techniques and their photoelectric behavior was studied using a PhotoElectrochemical Cell (PEC). An attenuation of the n- and correspondingly a reinforcement of the p-character of the inorganic semiconductors were concluded, after the deposition of the organic layer, due to the electron acceptor behavior of the fullerene moiety.  相似文献   

15.
High-temperature annealing (HTA), a process step prior to vapor cadmium chloride (VCC) treatment, has been found to be useful for improving the crystallinity of CdTe films and the efficiency of ultra-thin CdTe solar cells. Scanning electron microscopy, optical absorption, photoluminescence measurements and analyses on photoluminescence results using spectral deconvolution reveal that the additional HTA step produces substantial grain growth and reduces grain boundary defects. It also reduces excessive sulfur diffusion across the junction that can occur during the VCC treatment. The HTA step helps to produce pinhole-free CdTe films and reduce electrical shorts in ultra-thin CdTe solar cells. An efficiency of about 11.6% has been demonstrated for ultra-thin CdS/CdTe solar cells processed with HTA step.  相似文献   

16.
Armin G. Aberle 《Thin solid films》2009,517(17):4706-4710
The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films (“micromorph cells”). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.  相似文献   

17.
Effect of back-contact barrier on thin-film CdTe solar cells   总被引:2,自引:0,他引:2  
The presence of a back-contact barrier affects the current–voltage characteristics of thin-film CdS/CdTe/metal solar cells primarily by impeding hole transport, a current-limiting effect commonly referred to as “rollover.” In this work, the CdS/CdTe solar cell with a CdTe/metal back-contact barrier is modeled by two opposite polarity diodes in series. Analytic simulations are fitted to the measured current–voltage curve, the voltage distribution between the two diodes is shown under different conditions, and the back-contact barrier height is extracted. Room-temperature barrier heights exceeding 0.5 eV will generally result in significant fill-factor reduction.  相似文献   

18.
Our recent investigations have identified a pathway to produce transparent conducting oxide (TCO) films that demonstrate higher infrared transparency. The technique involves controlling the dielectric permittivity of the TCO film such that the electrical properties are maintained, but the plasma frequency (ωp) is shifted to longer wavelength. This has the effect of reducing free-carrier absorption in the visible and near-infrared spectral region, thus producing a TCO film with higher optical transmission. The technique has been demonstrated for sputtered films of indium tin oxide by adding small amounts of ZrO2 to a ceramic sputtering target, and for SnO2:F films deposited by chemical vapor deposition using a metalorganic Zr source.  相似文献   

19.
The excitonic luminescence band of polycrystalline cadmium telluride layers has been investigated by Photoluminescence (PL) and Photoluminescence excitation spectroscopy (PLE). CdTe was deposited by means of close space sublimation and the samples were activated by different chlorine containing compounds, i.e. cadmium chloride, hydrochloric acid, and sodium chloride as well as by simple air activation or received no post deposition treatment. In the PL spectra, four different peaks within the excitonic luminescence band were resolved. These include the free-exciton peak and two transitions of excitons bound to defects. Furthermore, free excitons and band to band transitions were detected by means of PLE. The PL and PLE spectra are discussed with respect to the post deposition treatments.  相似文献   

20.
AgInSe2 (AIS) films were grown on n-type Si substrates by the ultra-high-vacuum pulsed laser deposition technique from the AIS target synthesized from high-purity materials. The X-ray diffraction and microscopic studies of the films show that films are textured having terrace-like surface morphology. The optical studies of the films show that the optical band gap is about 1.24 eV. The electrical conductivity of AgInSe2/Si films shows excellent diode characteristics. The photoconductivity of the AgInSe2/Si device shows photocurrent of 2.8 mA at a bias-voltage of − 1 V with an open circuit voltage of 0.15 V. This shows that AIS films are very good absorber material for solar cell technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号