首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analog-to-digital conversion required in most disk-drive read-channel applications is designed for good dynamic and noise performance over a wide-input frequency range. This paper presents a 500-MSample/s, 6-bit analog to-digital converter (ADC) and its embedded implementation inside a disk-drive read channel, using a 0.35-μm CMOS double-poly (only one poly layer was used in the ADC), triple-metal process. The converter achieves better than 5 effective number of bits (ENOB) for input frequencies up to Nyquist frequency (fin=f s/2) and sampling frequencies fs up to 400 MHz. It also achieves better that 5.6 ENOB for input frequencies up to fs /4 over process, temperature, and power-supply variations. At maximum speed (fs=500 MHz), the converter still achieves better than 5 ENOB for input frequencies up to fin=200 MHz. Low-frequency performance is characterized by DNL<0.32 LSB and INL<0.2 LSB. The converter consumes 225 mW from a 3.3-V supply when running at 300 MHz and occupies 0.8 mm2 of chip area  相似文献   

2.
A 10-bit 200-MS/s CMOS parallel pipeline A/D converter   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MS/s CMOS parallel pipeline analog-to-digital (A/D) converter that can sample input frequencies above 200 MHz. The converter utilizes a front-end sample-and-hold (S/H) circuit and four parallel interleaved pipeline component A/D converters followed by a digital offset compensation. By optimizing for power in the architectural level, incorporating extensively parallelism and double-sampling both in the S/H circuit and the component ADCs, a power dissipation of only 280 mW from a 3.0-V supply is achieved. Implemented in a 0.5-μm CMOS process, the circuit occupies an area of 7.4 mm2. The converter achieves a differential nonlinearity and integral nonlinearity of ±0.8 LSB and ±0.9 LSB, respectively, while the peak spurious-free-dynamic-range is 55 dB and the total harmonic distortion better than 46 dB at a sampling rate of 200 MS/s  相似文献   

3.
This paper describes the design of a 10-bit, 40-MSample/s analog-to-digital converter (ADC) based on a cascaded folding and interpolating architecture. The folding and interpolating factors are optimized for low power. The ADC features balanced circuit design, a newly developed shifted averaging technique, and stacked circuits for analog and digital folding. The untrimmed ADC dissipates 65 mW from a single 5-V supply. The fully differential ADC achieves 9.2 effective bits for a 1.6-Vpp input signal. Its resolution bandwidth is 20 MHz. The ADC is realized in a 7-GHz, 0.6-μm BiCMOS process and measures 0.8 mm2  相似文献   

4.
采用TSMC 0.18μm 1P6M工艺设计了一个12位50 MS/s流水线A/D转换器(ADC)。为了减小失真和降低功耗,该ADC利用余量增益放大电路(MDAC)内建的采样保持功能,去掉了传统的前端采样保持电路;采用时间常数匹配技术,保证输入高频信号时,ADC依然能有较好的线性度;利用数字校正电路降低了ADC对比较器失调的敏感性。使用Cadence Spectre对电路进行仿真。结果表明,输入耐奎斯特频率的信号时,电路SNDR达到72.19 dB,SFDR达到88.23 dB。当输入频率为50 MHz的信号时,SFDR依然有80.51 dB。使用1.8 V电源电压供电,在50 MHz采样率下,ADC功耗为128 mW。  相似文献   

5.
A single-ended input but internally differential 10 b, 20 Msample/s pipelined analog-to-digital converter (ADC) is demonstrated with 4 mW per stage using a single 5 V supply. The prototype ADC made of an input sample and hold (S/H) plus 8 identical unscaled pipelined stages consumes 50 mW including power consumed by a bias generator and two internal buffer amplifiers driving common-mode bias lines. Key circuits developed for this low-power ADC are a dynamic comparator with a capacitive reference voltage divider that consumes no static power, a source-follower buffered op amp that achieves wide bandwidth using large input devices, and a self-biased cascode biasing circuit that tracks power supply variation. The ADC implemented using a double-poly 1.2 μm CMOS technology exhibits a DNL of ±0.65 LSB and a SNDR of 54 dB while sampling at 20 MHz. The chip die area is 13 mm2  相似文献   

6.
Oversampled bandpass A/D converters based on sigma-delta (ΣΔ) modulation can be used to robustly digitize the types of narrowband intermediate frequency (IF) signals that arise in radios and cellular systems. This paper proposes a two-path architecture for a fourth-order, bandpass modulator that is more tolerant of analog circuit limitations at high sampling speeds than conventional implementations based on the use of switched-capacitor biquadratic filters. An experimental prototype employing the two-path topology has been integrated in a 0.6-μm, single-poly, triple-metal CMOS technology with capacitors synthesized from a stacked metal structure. Two interleaved paths clocked at 40 MHz digitize a 200-kHz bandwidth signal centered at 20 MHz with 75 dB of dynamic range while suppressing the undesired mirror image signal by 42 dB. At low input signal levels, the mixing of spurious tones at DC and fs/2 with the input appears to degrade the performance of the modulator; out-of-band sinusoidal dither is shown to be an effective means of avoiding this degradation. The experimental modulator dissipates 72 mW from a 3.3 V supply  相似文献   

7.
A fully differential bipolar track-and-hold amplifier (THA) employs an open-loop linearization technique compatible with low supply voltage. A feedthrough reduction method utilizes the junction capacitance of a replica switch to provide a close match to the junction capacitance of the main switch. The differential full-scale (FS) input range is 0.5 V. In the track mode, with fin=10 MHz, FS sinewave input, the measured total harmonic distortion (THD) is less than -72 dB. With fs=300 MS/s and fin=10-50 MHz, FS sinewave input, the measured THD is less than -65 dB. This THD measurement reflects the held values as well as the tracking components of the output waveform. With fs<10 MS/s and fin=10-50 MHz, FS sinewave input, the measured feedthrough is less than -60 dB. The hold capacitance is 2.5 pF and the differential droop rate is 16 mV/μs. The THA consumes 32 mW from a 2.7-V power supply and is fabricated in a 0.5-μm, 18-GHz BiCMOS process  相似文献   

8.
魏子辉  黄水龙  单强 《电子学报》2017,45(12):2890-2895
为了保证模数转换器转换速度和精度,本文基于0.18微米工艺,设计实现了一款应用于12-bit 40-MS/s流水线ADC前端的采样保持电路.所采用的环型结构运放,可以简化设计、且占用面积小;同时,采用绝缘体上硅工艺,可以消除栅压自举开关中开关管的衬偏效应,改善开关的线性度,提高采样保持电路的性能.采样保持电路面积是0.023平方毫米.测试结果表明:在1.5V供电电压下,采样保持电路功耗是3.5mW;在1MHz输入频率、40MHz采样频率下,该采样保持电路无杂散动态范围可以达到76.85dB,满足12-bit 40-MS/s流水线模数转换器应用需求.  相似文献   

9.
一种折叠内插式高速模数转换器的设计   总被引:1,自引:0,他引:1  
描述了一种8bit,125MS/s采样率的折叠内插式ADC采用折叠内插结构设计。系统采用全并行结构的粗量化器实现高3位的量化编码,细量化部分采用折叠内插结构实现低5位的量化编码。电路设计中涉及分布式采样保持电路、折叠内插电路并在文章最后提出一种粗量化修正电路设计。通过HSPICE仿真测试,在采样频率为125MHz下对100M以内的输入频率测试,ADC信噪比达到40.0dB以上,功耗仅为170mW。  相似文献   

10.
陈良  刘琨  张正平 《微电子学》2012,42(3):297-300
介绍了基于0.35μm BiCMOS工艺的8位高速A/D转换器,采用独特的折叠和内插结构,在大大降低成本、功耗的同时,既能保证超高转换速率,又能达到较高的静态和动态指标。在采样率1GS/s和模拟输入差分250mV(Vp-p)、484MHz条件下进行测试,SFDR高达56dB,SNR高达45.5dB;在3.3V电源电压下,功耗为800mW。  相似文献   

11.
This paper describes a 10 b, 20 Msample/s pipeline A/D converter implemented in 1.2 μm CMOS technology which achieves a power dissipation of 35 mW at full speed operation. Circuit techniques used to achieve this level of power dissipation include digital correction to allow the use of dynamic comparators, and optimum scaling of capacitor values through the pipeline. Also, to be compatible with low voltage mixed-signal system environments, a switched capacitor (SC) circuit in each pipeline stage is implemented and operated at 3.3 V with a new high-speed, low-voltage operational amplifier and charge pump circuits. Measured performance includes 0.6 LSB of INL, 59.1 dB of SNDR (Signal-to-Noise-plus-Distortion-Ratio) for 100 kHz input at 20 Msample/s. At Nyquist sampling (10 MHz input) SNDR is 55.0 dB. Differential input range is ±1 V, and measured input referred RMS noise is 220 μV. The power dissipation at 1 MS/s is below 3 mW with 58 dB of SNDR  相似文献   

12.
A systematic design approach for low-power 10-bit, 100 MS/s pipelined analog-to-digital converter (ADC) is presented. At architectural level various per-stage-resolution are analyzed and most suitable architecture is selected for designing 10-bit, 100 MS/s pipeline ADC. At Circuit level a modified wide-bandwidth and high-gain two-stage operational transconductance amplifier (OTA) proposed in this work is used in track-and-hold amplifier (THA) and multiplying digital-to-analog converter (MDAC) sections, to reduce power consumption and thermal noise contribution by the ADC. The signal swing of the analog functional blocks (THA and MDAC sections) is allowed to exceed the supply voltage (1.8 V), which further increases the dynamic range of the circuit. Charge-sharing comparator is proposed in this work, which reduces the dynamic power dissipation and kickback noise of the comparator circuit. The bootstrap technique and bottom plate sampling technique is employed in THA and MDAC sections to reduce the nonlinearity error associated with the input signal resulting in a signal-to-noise-distortion ratio of 58.72/57.57 dB at 2 MHz/Nyquist frequency, respectively. The maximum differential nonlinearity (DNL) is +0.6167/−0.3151 LSB and the maximum integral nonlinearity (INL) is +0.4271/−0.4712 LSB. The dynamic range of the ADC is 58.72 dB for full-scale input signal at 2 MHz input frequency. The ADC consumes 52.6 mW at 100 MS/s sampling rate. The circuit is implemented using UMC-180 nm digital CMOS technology.  相似文献   

13.
Liu Zhen  Jia Song  Wang Yuan  Ji Lijiu  Zhang Xing 《半导体学报》2009,30(12):125013-125013-5
This paper describes an 8-bit 125 Mhzlow-powerCMOS fully-foldinganalog-to-digital converter(ADC).A novel mixed-averaging distributed T/H circuit is proposed to improve the accuracy. Folding circuits are not only used in the fine converter but also in the coarse one and in the bit synchronization block to reduce the number of comparators for low power. This ADC is implemented in 0.5μm CMOS technology and occupies a die area of 2 × 1.5 mm~2. The measured differential nonlinearity and integral nonlinearity are 0.6 LSB/-0.8 LSB and 0.9 LSB/-1.2 LSB, respectively. The ADC exhibits 44.3 dB of signal-to-noise plus distortion ratio and 53.5 dB of spurious-free dynamic range for 1 MHz input sine-wave. The power dissipation is 138 mW at a sampling rate of 125 MHz at a 5 V supply.  相似文献   

14.
陈利杰  周玉梅  卫宝跃 《半导体学报》2010,31(11):115006-115006-7
This paper describes a 10-bit,50-MS/s pipelined A/D converter(ADC) with proposed area- and power-efficient architecture.The conventional dedicated sample-hold-amplifier(SHA) is eliminated and the matching requirement between the first multiplying digital-to-analog converter(MDAC) and sub-ADC is also avoided by using the SHA merged with the first MDAC(SMDAC) architecture,which features low power and stabilization.Further reduction of power and area is achieved by sharing an opamp between two successive pi...  相似文献   

15.
A low-power CMOS reconfigurable analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption is described. The converter achieves the wide operating range by (1) reconfiguring its architecture between pipeline and delta-sigma modes; (2) varying its circuit parameters, such as size of capacitors, length of pipeline, and oversampling ratio, among others; and (3) varying the bias currents of the opamps in proportion to the converter sampling frequency, accomplished through the use of a phase-locked loop (PLL). This converter also incorporates several power-reducing features such as thermal noise limited design, global converter chopping in the pipeline mode, opamp scaling, opamp sharing between consecutive stages in the pipeline mode, an opamp chopping technique in the delta-sigma mode, and other design techniques. The opamp chopping technique achieves faster closed-loop settling time and lower thermal noise than conventional design. At a converter power supply of 3.3 V, the converter achieves a bandwidth range of 0-10 MHz over a resolution range of 6-16 bits, and parameter reconfiguration time of twelve clock cycles. Its PLL lock range is measured at 20 kHz to 40 MHz. In the delta-sigma mode, it achieves a maximum signal-to-noise ratio of 94 dB and second and third harmonic distortions of 102 and 95 dB, respectively, at 10 MHz clock frequency, 9.4 kHz bandwidth, and 17.6 mW power. In the pipeline mode, it achieves a maximum DNL and INL of ±0.55 LSBs and ±0.82 LSBs, respectively, at 11 bits, at a clock frequency of 2.6 MHz and 1 MHz tone with 24.6 mW of power  相似文献   

16.
A three-stage bandpass sigma-delta (ΣΔ) analog-to-digital converter has been designed specifically for operation at low oversampling ratios. In the proposed architecture, the center frequency of the third stage is shifted slightly from that of the first two stages to achieve more efficient noise shaping across the signal band. An experimental modulator based on the proposed topology has been integrated in a 0.25-μm CMOS technology and achieves a dynamic range of 75 dB with a maximum signal-to-noise-plus-distortion ratio (SNDR) of 70 dB when digitizing a 2-MHz signal band centered at 16 MHz. This circuit implements an fs/4 bandpass architecture and thus operates at 64-MHz clock rate. It dissipates 110 mW from a 2.5-V supply, and its active area is 4 mm2  相似文献   

17.
Zhu Xubin  Ni Weining  Shi Yin 《半导体学报》2009,30(5):055011-055011-4
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.  相似文献   

18.
介绍了一种基于0.35μmGeSi-BiCMOS工艺的1GSPS采样/保持电路。该电路采用全差分开环结构,使用局部反馈提高开环缓冲放大器的线性度;采用增益、失调数字校正电路补偿高频输入信号衰减和工艺匹配误差造成的失调。在1GS/s采样率、484.375MHz输入信号频率、3.3V电源电压下进行仿真。结果显示,电路的SFDR达到75.6dB,THD为-74.9dB,功耗87mW。将该采样/保持电路用于一个8位1GSPSA/D转换器。流片测试结果表明,在1GSPS采样率,240.123MHz和5.123MHz输入信号下,8位A/D转换器的SNR为41.39dB和43.19dB。  相似文献   

19.
A 5 V single supply, 6-bit flash A/D converter (ADC) has been developed that supports sampling rates of up to 80 Ms/s. The converter is optimized to operate in undersampling applications where the ADC has to deliver greater than 5.2 Effective Number Of Bits (ENOB's) with input frequencies well beyond Nyquist. Excellent dynamic linearity performance has been achieved with input frequencies up to 75 MHz and a gain flatness of better than 0.1 dB is obtained over the input signal spectrum of 50 MHz-95 MHz. This ADC is fabricated on a 1.0 μm advanced BiCMOS process that features trench-isolated bipolar devices with an ft of 10 GHz  相似文献   

20.
A new sampling gate circuit, with dual outputs functioning alternately in the track and hold modes, is integrated in an open-loop sample-and-hold circuit architecture achieving greater than 450-MHz small-signal input bandwidth and 100-MHz maximum sample rate. The sampling gate also incorporates slew enhancement techniques to achieve (+430 V/μs, -510 V/μs) slew rate and features a `built-in' buffer to maintain constant input impedance for both the track and hold modes, simplifying design of the front-end input buffer. Special on-chip clock generation circuits are used to minimize sampled pedestal (+4 mV). Power dissipation is less than 300 mW, including output driver. Measured harmonics are 58 dB down for a 2 Vp-p 20-MHz sine wave sampled at 100 MHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号