共查询到20条相似文献,搜索用时 15 毫秒
1.
《Solid-State Circuits, IEEE Journal of》2009,44(11):3039-3050
2.
This paper describes the design of a 10-bit, 40-MSample/s analog-to-digital converter (ADC) based on a cascaded folding and interpolating architecture. The folding and interpolating factors are optimized for low power. The ADC features balanced circuit design, a newly developed shifted averaging technique, and stacked circuits for analog and digital folding. The untrimmed ADC dissipates 65 mW from a single 5-V supply. The fully differential ADC achieves 9.2 effective bits for a 1.6-Vpp input signal. Its resolution bandwidth is 20 MHz. The ADC is realized in a 7-GHz, 0.6-μm BiCMOS process and measures 0.8 mm2 相似文献
3.
A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC 总被引:4,自引:0,他引:4
Byung-Moo Min Kim P. Bowman F.W. III Boisvert D.M. Aude A.J. 《Solid-State Circuits, IEEE Journal of》2003,38(12):2031-2039
A 10-bit 80-MS/s analog-to-digital converter (ADC) with an area- and power-efficient architecture is described. By sharing an amplifier between two successive pipeline stages, a 10-bit pipeline is realized using just four amplifiers with a separate sample-and-hold block. The proposed feedback signal polarity inverting (FSPI) technique addresses the drawback of the conventional amplifier sharing technique. A wide-swing wide-bandwidth telescopic amplifier and an early comparison technique with a constant delay circuit have been developed to further reduce power consumption. The ADC is implemented in a 0.18-/spl mu/m dual-gate-oxidation CMOS process technology, achieves 72.8-dBc spurious free dynamic range, 57.92-dBc signal-to-noise ratio, 9.29 effective number of bits (ENOB) for a 99-MHz input at full sampling rate, and consumes 69 mW from a 3-V supply. The ADC occupies 1.85 mm/sup 2/. 相似文献
4.
Won-Chul Song Hae-Wook Choi Sung-Ung Kwak Bang-Sup Song 《Solid-State Circuits, IEEE Journal of》1995,30(5):514-521
A single-ended input but internally differential 10 b, 20 Msample/s pipelined analog-to-digital converter (ADC) is demonstrated with 4 mW per stage using a single 5 V supply. The prototype ADC made of an input sample and hold (S/H) plus 8 identical unscaled pipelined stages consumes 50 mW including power consumed by a bias generator and two internal buffer amplifiers driving common-mode bias lines. Key circuits developed for this low-power ADC are a dynamic comparator with a capacitive reference voltage divider that consumes no static power, a source-follower buffered op amp that achieves wide bandwidth using large input devices, and a self-biased cascode biasing circuit that tracks power supply variation. The ADC implemented using a double-poly 1.2 μm CMOS technology exhibits a DNL of ±0.65 LSB and a SNDR of 54 dB while sampling at 20 MHz. The chip die area is 13 mm2 相似文献
5.
Moreland C. Murden F. Elliott M. Young J. Hensley M. Stop R. 《Solid-State Circuits, IEEE Journal of》2000,35(12):1791-1798
This paper describes a 14-b analog-to-digital converter designed in a complementary bipolar process. Although it uses a fairly traditional three-stage subranging architecture, several nontraditional techniques are incorporated to achieve 14 bits of performance at a clock rate of 100 MHz. For linearity, the most critical of these is wafer level trimming of the first subrange digital-to-analog converter. Prototype silicon exhibits a spurious-free dynamic range of 90 dB through the Nyquist frequency and a signal-to noise ratio of 74 dB while dissipating 1.25 W 相似文献
6.
Mingjun Fan Junyan Ren Ning Li Fan Ye Jun Xu 《Analog Integrated Circuits and Signal Processing》2010,63(3):495-501
A set of low-power techniques is proposed to realize low power design in pipeline analog-to-digital converter (ADC). These
techniques include removing the active S/H (i.e., SHA-less), sharing the opamp between the adjacent multi-bit-per-stages,
low-power high-efficiency high-swing amplifier technique. Also, a new sampling topology is proposed to minimize aperture error
by matching the time constant between the two input signal paths. All these skills are verified by simulation in the design
of the 1.8-V 11-bit 40-MHz ADC in a 0.18-μm CMOS process with power dissipation 21-mW, signal-to-noise-and-distortion ratio
(SNDR) 65-dB, effective number of bit (ENOB) 10.5-bit, spurious free dynamic range (SFDR) 78-dB, total harmonic distortion
(THD) −75.4-dB, signal-to-noise ratio (SNR) 65.4-dB and figure-of-merit (FOM) 0.18 pJ/step. 相似文献
7.
A 5-5-5-6-b pipelined analog-to-digital converter (ADC) architecture alleviates the requirements for initial capacitor matching and residue amplifier settling accuracy. The two 5-b most significant bit (MSB) stages are digitally calibrated to implement a 15-b, 5-Msample/s low-spurious ADC using 1.4-μm CMOS. A skip-and-fill algorithm with nonlinear interpolation also opens up the possibility of calibrating ADC's in the background synchronously with their normal operation. Interpolation results for the background calibration are compared with the foreground calibration results. The prototype ADC exhibits a differential nonlinearity (DNL) of +0.75/-0.6 least significant bit (LSB), an integral nonlinearity (INL) of +1.77/-1.58 LSB, and all spurious components are suppressed to below -93 dB when sampled at 5 MHz. The chip occupies 27 mm2, and the analog part consumes 60 mW at 5 V. Memory and arithmetic units for calibration are supplied externally in testing 相似文献
8.
A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications 总被引:1,自引:0,他引:1
Jian Li Xiaoyang Zeng Lei Xie Jun Chen Jianyun Zhang Yawei Guo 《Solid-State Circuits, IEEE Journal of》2008,43(2):321-329
This paper describes a 10-bit 30-MS/s subsampling pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 mum CMOS process. The ADC adopts a power efficient amplifier sharing architecture in which additional switches are introduced to reduce the crosstalk between the two opamp-sharing successive stages. A new configuration is used in the first stage of the ADC to avoid using a dedicated sample-and-hold amplifier (SHA) circuit at the input and to avoid the matching requirement between the first multiplying digital-to-analog converter (MDAC) and flash input signal paths. A symmetrical gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.57 least significant bit (LSB) and 0.8 LSB, respectively, at full sampling rate. The ADC exhibits higher than 9.1 effective number of bits (ENOB) for input frequencies up to 30 MHz, which is the twofold Nyquist rate (fs/2), at 30 MS/s. The ADC consumes 21.6 mW from a 1.8-V power supply and occupies 0.7 mm2, which also includes the bandgap and buffer amplifiers. The figure-of-merit (FOM) of this ADC is 0.26 pJ/step. 相似文献
9.
The analog-to-digital conversion required in most disk-drive read-channel applications is designed for good dynamic and noise performance over a wide-input frequency range. This paper presents a 500-MSample/s, 6-bit analog to-digital converter (ADC) and its embedded implementation inside a disk-drive read channel, using a 0.35-μm CMOS double-poly (only one poly layer was used in the ADC), triple-metal process. The converter achieves better than 5 effective number of bits (ENOB) for input frequencies up to Nyquist frequency (fin=f s/2) and sampling frequencies fs up to 400 MHz. It also achieves better that 5.6 ENOB for input frequencies up to fs /4 over process, temperature, and power-supply variations. At maximum speed (fs=500 MHz), the converter still achieves better than 5 ENOB for input frequencies up to fin=200 MHz. Low-frequency performance is characterized by DNL<0.32 LSB and INL<0.2 LSB. The converter consumes 225 mW from a 3.3-V supply when running at 300 MHz and occupies 0.8 mm2 of chip area 相似文献
10.
Yang W. Kelly D. Mehr L. Sayuk M.T. Singer L. 《Solid-State Circuits, IEEE Journal of》2001,36(12):1931-1936
This paper describes the design of a 14-b 75-Msample/s pipeline analog-to-digital converter (ADC) implemented in a 0.35-μm double-poly triple-metal CMOS process. The ADC uses a 4-b first stage to relax capacitor-matching requirements, buffered bootstrapping to reduce signal-dependent charge injection, and a flip-around track-and-hold amplifier with wide common-mode compliance to reduce noise and power consumption. It achieves 14-b accuracy without calibration or dithering. Typical differential nonlinearity is 0.6 LSB, and integral nonlinearity is 2 LSB. The ADC also achieves 73-dB signal-to-noise ratio, and 85-dB spurious-free dynamic range over the first Nyquist band. The 7.8-mm2 ADC operates with a 2.7- to 3.6-V supply, and dissipates 340 mW at 3 V 相似文献
11.
A 400-Msample/s, 6-bit CMOS folding and interpolating analog-to-digital converter (ADC) is described. A low-impedance current-mode approach is adopted. Current-division interpolation incorporated within the folders allows fast operation and is compatible with low supply voltages. This interpolation scheme, together with a short aperture comparator, gives good performance for input frequencies up to one-quarter of the sampling rate without using a sample and hold. For simplicity, the ADC uses only a single clock and its complement. The device is implemented in a 0.5 μm BiCMOS technology using only CMOS devices. The converter occupies 0.6 mm2 and dissipates 200 mW from a 3.2 V supply 相似文献
12.
Deguchi K. Suwa N. Ito M. Kumamoto T. Miki T. 《Solid-State Circuits, IEEE Journal of》2008,43(10):2303-2310
A 6-bit 3.5-GS/s flash ADC is reported. A load circuit with a clamp diode and a replica-biasing scheme is developed for low-voltage and high-speed operation. An acceleration capacitor is introduced for high-speed overdrive recovery of a comparator. An averaging and interpolation network is employed in this ADC. The interpolation factor is optimized considering random offset, active area, and systematic offset to realize low offset and small active area. The ADC is fabricated in a 90-nm CMOS process and occupies 0.15 mm2. It consumes 98 mW with a 0.9-V power supply. With Nyquist input, SNDR and SFDR at 3.5 GS/s are 31.18 dB and 38.67 dB, respectively. 相似文献
13.
A 1.8-V 15-bit 40-MSample/s CMOS pipelined analog-to-digital converter with 90-dB spurious-free dynamic range (SFDR) and 72-dB peak signal-to-noise ratio (SNR) over the full Nyquist band is presented. Its differential and integral nonlinearities are 0.25 LSB and 1.5 LSB, respectively, and its power consumption is 400 mW. This performance is enabled by digital background calibration of internal digital-to-analog converter (DAC) noise and interstage gain errors. The calibration achieves improvements of better than 12 dB in signal-to-noise plus distortion ratio and 20 dB in SFDR relative to the case where calibration is disabled. Other enabling features of the prototype integrated circuit (IC) include a low-latency, segmented, dynamic element-matching DAC, distributed passive input signal sampling, and asymmetric clocking to maximize the time available for the first-stage residue amplifier to settle. The IC is realized in a 0.18-/spl mu/m mixed-signal CMOS process and has a die size of 4mm/spl times/5 mm. 相似文献
14.
An asynchronous analog-to-digital converter (ADC) based on successive approximation is used to provide a high-speed (600-MS/s) and medium-resolution (6-bit) conversion. A high input bandwidth (>4 GHz) was achieved which allows its use in RF subsampling applications. By using asynchronous processing techniques, it avoids clocks at higher than the sample rate and speeds up a nonbinary successive approximation algorithm utilizing a series nonbinary capacitive ladder with digital radix calibration. The sample rate of 600 MS/s was achieved by time-interleaving two single ADCs, which were fabricated in a 0.13-mum standard digital CMOS process. The ADC achieves a peak SNDR of 34 dB, while only consuming an active area of 0.12mm2 and having power consumption of 5.3 mW 相似文献
15.
Seung-Chul Lee Kwi-Dong Kim Jong-Kee Kwon Jongdae Kim Seung-Hoon Lee 《Solid-State Circuits, IEEE Journal of》2006,41(7):1596-1605
This paper describes a 10-bit 400-MS/s dual-channel analog-to-digital converter (ADC) insensitive to offset, gain, and sampling-time mismatches between channels. An adaptive closed-loop sampling technique based on a multi-stage amplifier eliminates the channel offset effectively. Multi-stage amplifiers with high DC gain reduce the gain mismatch between channels and guarantee a large signal swing at low supply voltages. A single clock-edge sampling scheme for clock-skew reduction minimizes the sampling-time mismatch. The proposed prototype ADC in a 0.13-/spl mu/m CMOS process occupies an active area of 4.2mm/sup 2/, dissipates 160mW from 1.2 V and 400 MS/s, and shows a signal-to-noise-and-distortion ratio of 54.8 dB with a 29-MHz sinusoidal input at 400 MS/s without any channel-mismatch calibration technique. The measured maximum offset and gain mismatches are less than 0.1% and 0.2%, respectively. 相似文献
16.
A monolithic active equalizer in 2-μm CMOS technology is described, suitable for use in magnetic storage read channels employing peak-detection. Computer simulation of the channel and numerical optimization of equalizer performance have led to a 4-pole equalizer which outperforms conventional 7-pole linear-phase pulse-slimming equalizers. Circuits with matched and scaled stray capacitances use low transconductance amplifiers, with a total on-chip power dissipation of 40 mW (excluding output buffers). A master-slave architecture tunes filter pole frequencies and quality factors (Q) to their nominal values against process and temperature variations 相似文献
17.
A 10-b 100-Msample/s pipelined subranging analog-digital converter (ADC) has been achieved. Such technologies as a pipelined subranging scheme, a track-and-hold amplifier (THA) with current-switching sampling gates, a 94-dB dc open-loop gain, a 335-MHz unity-gain frequency op amp, and a carry-look-ahead adder for digital error correction are presented. The 3.4-mm×5.6-mm ADC chip was fabricated using a 0.8-μm BiCMOS process and operates with 950-mW power dissipation from a single -5-V power supply 相似文献
18.
Jipeng Li Un-Ku Moon 《Solid-State Circuits, IEEE Journal of》2004,39(9):1468-1476
A time-shifted correlated double sampling (CDS) technique is proposed in the design of a 10-bit 100-MS/s pipelined ADC. This technique significantly reduces the finite opamp gain error without compromising the conversion speed, allowing the active opamp blocks to be replaced by simple cascoded CMOS inverters. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. An efficient common-mode voltage control is introduced for pseudodifferential architecture which can further reduce power consumption. Fabricated in a 0.18-/spl mu/m CMOS process, the prototype 10-bit pipelined ADC occupies 2.5 mm/sup 2/ of active die area. With 1-MHz input signal, it achieves 65-dB SFDR and 54-dB SNDR at 100MS/s. For 99-MHz input signal, the SFDR and SNDR are 63 and 51 dB, respectively. The total power consumption is 67 mW at 1.8-V supply, of which analog portion consumes 45 mW without any opamp current scaling down the pipeline. 相似文献
19.
A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC 总被引:3,自引:0,他引:3
Limotyrakis S. Kulchycki S.D. Su D.K. Wooley B.A. 《Solid-State Circuits, IEEE Journal of》2005,40(5):1057-1067
A pipelined analog-to-digital converter (ADC) architecture suitable for high-speed (150 MHz), Nyquist-rate A/D conversion is presented. At the input of the converter, two parallel track-and-hold circuits are used to separately drive the sub-ADC of a 2.8-b first pipeline stage and the input to two time-interleaved residue generation paths. Beyond the first pipeline stage, each residue path includes a cascade of two 1.5-b pipeline stages followed by a 4-b "backend" folding ADC. The full-scale residue range at the output of the pipeline stages is half that of the converter input range in order to conserve power in the operational amplifiers used in each residue path. An experimental prototype of the proposed ADC has been integrated in a 0.18-/spl mu/m CMOS technology and operates from a 1.8-V supply. At a sampling rate of 150 MSample/s, it achieves a peak SNDR of 45.4 dB for an input frequency of 80 MHz. The power dissipation is 71 mW. 相似文献
20.
Highly Interleaved 5-bit, 250-MSample/s, 1.2-mW ADC With Redundant Channels in 65-nm CMOS 总被引:2,自引:0,他引:2
《Solid-State Circuits, IEEE Journal of》2008,43(12):2641-2650