首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noninvasive elastography (NIVE) produces elastograms that are difficult to interpret because NIVE visualizes strain in the transducer coordinate system. In this paper, we hypothesized that transforming normal and shear strain elastograms to the vessel coordinate system will produce better strain elastograms. To corroborate this hypothesis, we acquired synthetic-aperture (SA) ultrasound data from simulated and physical vessel phantoms. In both studies, SA echo frames were reconstructed from data acquired with a sparse transducer array. The simulation study was performed with homogeneous and heterogenous phantoms, but in the experimental study we used a modified ultrasound scanner to acquire SA data from homogeneous (n = 1) and heterogeneous (n = 3) vessel phantoms. Axial and lateral displacements were estimated by performing two-dimensional cross-correlation analysis on the beamformed RF echo frames. We generated radial and circumferential strain elastograms by transforming normal and shear strain elastograms to the vessel coordinate system. The results revealed: 1) radial and circumferential strain elastograms acquired from simulated data had a relative root mean squared error on the order of 0.1%; 2) experimentally acquired radial and circumferential strain elastograms had elastographic contrast-to-noise ratio (CNRe) between 10 and 40 dB, and elastographic signal-to-noise ratio (SNRe) between 10 and 35 dB, depending on the number of active transmission elements employed during imaging; 3) radial and circumferential strain elastograms produced with fewer than 8 active transmission elements were inferior to those computed with a greater number of active elements; and 4) plaques were evident in the strain elastograms, except in those obtained with the sparsest transducer array. This study demonstrated that a syntheticaperture ultrasound system could visualize radial and circumferential strain noninvasively.  相似文献   

2.
A method for real-time three-dimensional (3-D) ultrasound imaging using a mechanically scanned linear phased array is proposed. The high frame rate necessary for real-time volumetric imaging is achieved using a sparse synthetic aperture beamforming technique utilizing only a few transmit pulses for each image. Grating lobes in the two-way radiation pattern are avoided by adjusting the transmit element spacing and the receive aperture functions to account for the missing transmit elements. The signal loss associated with fewer transmit pulses is minimized by increasing the power delivered to each transmit element and by using multiple transmit elements for each transmit pulse. By mechanically rocking the array, in a way similar to what is done with an annular array, a 3-D set of images can be collected in the time normally required for a single image.  相似文献   

3.
王文生  杨秀庭 《声学技术》2009,28(6):729-733
研究了线列阵声纳应用常规波束形成方法进行目标被动定位的理论性能。在反潜战中,重型热动力鱼雷是潜艇面临的重要威胁。为对鱼雷实施被动定位,推导了常规波束形成方法目标被动定位的渐进方差,并与克拉美-劳下界进行了比对分析。此外,通过数值方法研究了信号强度、目标位置、基阵孔径和积分时间等参数对被动定位性能的影响。结果表明:应用现有的声纳设备(如潜艇舷侧阵)来解决中等距离的鱼雷被动定位问题是完全可能的。  相似文献   

4.
李敏  杨秀庭  李启虎 《声学技术》2007,26(6):1135-1139
研究矢量均匀线列阵波束形成算法的左右舷分辨性能。水听器可同步共点地测量声场的声压和质点振速,为一具有指向性的空间共点阵,从而能够解决单线阵声呐的目标左右舷模糊问题。文章分析了采用不同波束形成方法时矢量阵广义Cardiod处理和声强处理的目标左右舷分辨性能,并利用海试数据进行了验证。研究结果表明:自适应波束形成具有比常规波束形成更佳的左/右舷分辨性能,且对矢量阵处理而言,广义Cardioid处理更为稳健和实用。  相似文献   

5.
Volumetric ultrasound imaging using 2-D CMUT arrays   总被引:5,自引:0,他引:5  
Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a candidate to overcome the difficulties in the realization of 2-D arrays for real-time 3-D imaging. In this paper, we present the first volumetric images obtained using a 2-D CMUT array. We have fabricated a 128 x 128-element 2-D CMUT array with through-wafer via interconnects and a 420-microm element pitch. As an experimental prototype, a 32 x 64-element portion of the 128 x 128-element array was diced and flip-chip bonded onto a glass fanout chip. This chip provides individual leads from a central 16 x 16-element portion of the array to surrounding bondpads. An 8 x 16-element portion of the array was used in the experiments along with a 128-channel data acquisition system. For imaging phantoms, we used a 2.37-mm diameter steel sphere located 10 mm from the array center and two 12-mm-thick Plexiglas plates located 20 mm and 60 mm from the array. A 4 x 4 group of elements in the middle of the 8 x 16-element array was used in transmit, and the remaining elements were used to receive the echo signals. The echo signal obtained from the spherical target presented a frequency spectrum centered at 4.37 MHz with a 100% fractional bandwidth, whereas the frequency spectrum for the echo signal from the parallel plate phantom was centered at 3.44 MHz with a 91% fractional bandwidth. The images were reconstructed by using RF beamforming and synthetic phased array approaches and visualized by surface rendering and multiplanar slicing techniques. The image of the spherical target has been used to approximate the point spread function of the system and is compared with theoretical expectations. This study experimentally demonstrates that 2-D CMUT arrays can be fabricated with high yield using silicon IC-fabrication processes, individual electrical connections can be provided using through-wafer vias, and flip-chip bonding can be used to integrate these dense 2-D arrays with electronic circuits for practical 3-D imaging applications.  相似文献   

6.
This paper discusses research in the use of biologically inspired spatial phased transducer arrays for the nondestructive evaluation of homogeneous and heterogeneous structural components. It is shown that beamforming, which is used by orb web spiders to locate their prey in a network of web fibers, can be achieved by applying weights and time delays to the tapped signals from a transducer array in a narrow frequency band to obtain desired directional sensitivities and optimal array gains. The resulting spatio-temporal filters are then used to detect, locate and quantify structural damage. The theory of beamsteering and beamforming for processing propagating wave data in damaged elastic media is discussed. Experimental results for homogeneous and heterogeneous plates are given to verify the theoretical discussions. Design considerations for the phased arrays are examined as are the benefits of nonlinear array geometries for better spatial coverage. The advantage of using adaptive over conventional beamforming is demonstrated with a Frost Constraint adaptive technique.  相似文献   

7.
We propose an all point transmit and receive focusing method based on transmit synthetic focusing combined with receive dynamic focusing in a linear array transducer. In the method, on transmit, a virtual source element is assumed to be located at the transmit focal depth of conventional B-mode imaging systems, and transmit synthetic focusing is used in two half planes, one before and the other after the transmit focal depth, using the RF data of each scanline, together with all other relevant RF scanline data previously stored. The proposed new method uses the same data acquisition scheme as the conventional focusing method while maintaining the same frame rate via high-speed signal processing, but it is not suitable for imaging moving objects. It improves upon the lateral resolution and sidelobe level at all imaging depths. Also, it increases the transmit power and image signal-to-noise ratio (SNR), due to transmit field synthesis, and extends the image penetration depth as well. Evaluations with simulation and experimental data show much improvement in resolution and SNR at all imaging depths.  相似文献   

8.
Capon beamforming in medical ultrasound imaging with focused beams   总被引:1,自引:0,他引:1  
Medical ultrasound imaging is conventionally done by insonifying the imaged medium with focused beams. The backscattered echoes are beamformed using delay-and-sum operations that cannot completely eliminate the contribution of signals backscattered by structures off the imaging beam to the beamsum. It leads to images with limited resolution and contrast. This paper presents an adaptation of the Capon beamformer algorithm to ultrasound medical imaging with focused beams. The strategy is to apply data-dependent weight functions to the imaging aperture. These weights act as lateral spatial filters that filter out off-axis signals. The weights are computed for each point in the imaged medium, from the statistical analysis of the signals backscattered by that point to the different elements of the imaging probe when insonifying it with different focused beams. Phantom and in vivo images are presented to illustrate the benefits of the Capon algorithm over the conventional delay and-sum approach. On heart sector images, the clutter in the heart chambers is decreased. The endocardium border is better defined. On abdominal linear array images, significant contrast and resolution enhancement are observed.  相似文献   

9.
The design and realisation of a 4 times 4 Butler matrix for multibeam antenna arrays operating at 5.8timesGHz are described. The matrix is implemented on a single layer slotline structure to avoid using air bridges as required in coplanar waveguide technology. In this design, a new hybrid coupler and a crossover using slotline technology were designed and fabricated, and they are used to build a new Butler matrix. To examine the performances of the proposed matrix, numerical simulations and experimental measurements were carried out; the comparison between simulated and experimental results shows a good agreement.  相似文献   

10.
Dynamically focused and steered high frequency ultrasound imaging systems require arrays with fine element spacing, wide bandwidths, and large apertures. However, these characteristics are difficult to achieve at frequencies greater than 30 MHz using conventional array construction methods. Optical schemes offer a solution. Focused laser beams incident on a suitable surface can generate and detect acoustic radiation. Precisely controlling the position and size of the beams defines points of transmission and detection, making it possible for pulse-echo image formation by synthetic aperture methods. An optical detection array was built, relying on a conventional piezoelectric transducer as an ultrasound source. The detection system, with near optimal resolution over a wide depth of field, demonstrates the potential for high frequency array implementation using optical techniques. A possible application is in pathology, where 2-D or 3-D fine resolution pulse-echo imaging can be performed in situ without the need for biopsies.  相似文献   

11.
The development of 2-D array transducers has received much recent interest. Unfortunately, fabrication of high density 2-D arrays is difficult due to the large number of electrical interconnections which must be made to the back side of the elements. A typical array operating at 2.2 MHz may have 256 or more connections within a 16.4 mm circular footprint. Interconnection becomes even more challenging as operating frequencies increase. To solve this problem, we have developed a multilayer flexible (MLF) circuit interconnect consisting of a polyimide dielectric with inter-laminar vias routing signals vertically and etched metal traces routing signals horizontally. A transducer is fabricated from an MLF by bonding a PZT chip to its surface and dicing the chip into individual elements, with the saw kerf extending partially into the top polyimide layer to ensure physical and electrical isolation of the elements. The KLM model was used to compare the performance of an MLF 2-D array to a conventional hand wired 2-D array. MLF and wire guide transducers were fabricated, each with 256 active elements, 0.4 mm interelement spacing, and 2.2 MHz center frequency. Vector impedance, pulse length, bandwidth, angular response, and cross-coupling were found to be comparable in both types of arrays. Using the MLF, however, fabrication time was reduced dramatically. More importantly, MLF technology may be used to increase 2-D array connection density beyond the limitations of current of hand wired fabrication techniques. Thus MLF circuits provide a means for the interconnection of current and future high frequency 2-D arrays.  相似文献   

12.
The purpose of this paper was to evaluate the in vivo feasibility of using phased arrays for MRI guided ultrasound surgery. Two different array concepts were investigated: a spherically curved concentric ring array to move the focus along the central axis and a spherically curved 16 square element array to make the focus larger. Rabbit thigh muscles were exposed in vivo in a 1.5 T MRI scanner to evaluate the array performance. The results showed that both of the arrays performed as expected, and the focus could be moved and enlarged. In addition, adequate power could be delivered from the arrays to necrose in vivo muscle tissue in 10 s. This study was the first implementation of phased arrays for MRI guided ultrasound surgery. The results demonstrate that phased arrays have significant potential for noninvasive tissue coagulation  相似文献   

13.
14.
In adaptive ultrasound imaging, accurate estimation of the array covariance matrix is of great importance, and biases the performance of the adaptive beamformer. The more accurately the covariance matrix can be estimated, the better the resolution and contrast can be achieved in the ultrasound image. To this end, in this paper, we have used the forward-backward spatial averaging for array covariance matrix estimation, which is then employed in minimum variance (MV) weights calculation. The performance of the proposed forward-backward MV (FBMV) beamformer is tested on simulated data obtained using Field II. Data for two closely located point targets surrounded by speckle pattern are simulated showing the higher amplitude resolution of the FBMV beamformer in comparison to the forward-only (F-only) MV beamformers, without the need for diagonal loading. A circular cyst with a diameter of 6 mm and a phantom containing wire targets and two cysts with different diameters of 8 mm and 6 mm are also simulated. The simulations show that the FBMV beamformer, in contrast to the F-only MV, could estimate the background speckle statistics without the need for temporal smoothing, resulting in higher contrast for the FBMV-resulted image in comparison to the MV images. In addition, the effect of steering vector errors is investigated by applying an error of the sound speed estimate to the ultrasound data. The simulations show that the proposed FBMV beamformer presents a satisfactory robustness against data misalignment resulted from steering vector errors, outperforming the regularized F-only MV beamformer. These improvements are achieved without compromising the good resolution of the MV beamformer and resulted from more accurate estimation of the covariance matrix and consequently, the more accurate setting of the MV weights.  相似文献   

15.
Treatment planning for hyperthermia with ultrasound phased arrays   总被引:2,自引:0,他引:2  
Treatment planning for ultrasound phased arrays suggests a strategy for hyperthermia therapy which satisfies therapeutic conditions at the target and spares other sensitive anatomical structures. To predict both desirable and harmful interactions between ultrasound and important structures such as the tumor, bones, and air pockets, a hyperthermia treatment planning system has been developed for ultrasound phased arrays. This collection of treatment planning routines consists of geometric and thermal optimization procedures specific to ultrasound phased arrays, where geometric treatment planning, combined with thermal treatment planning and three-dimensional visualization, provides essential information for the optimization of individual patient treatments. A patient image data set for cancer of the prostate, a difficult target situated in the midst of multiple pelvic bone obstructions, illustrates the geometric treatment planning algorithm and other tools for treatment analysis. The results indicate that the analysis of complex three-dimensional relationships between the applicator, anatomical structures, and incident fields provides an important means of predicting treatment limiting conditions, thereby allowing the hyperthermia applicator to electronically adapt to individual patients and specific sites  相似文献   

16.
Shadowing of an imaging aperture occurs when ultrasound beams are partially obstructed by an acoustically hard tissue, e.g., bone tissue. This effect leads to reduced resolution and, in some cases, geometrical distortion. In this paper, we initially introduce a binary apodization model to simulate effects of the shadowing on the point scatterers located close to a bone structure. Further, in a simulation study and an in vitro experiment, the minimum variance (MV) beamforming method is employed to image scatterers partly located in the shadow of bone. We show that the MV beamformer can result in a distorted image when the imaging aperture is highly obstructed by the bone structure. This distortion can be seen as an apparent lateral shift of the point spread function and a decrease in the sensitivity. Based on the signal power across the aperture, we adaptively determine the shadowed elements and discard their corresponding data from the covariance matrix to improve the MV beamformer performance. This modified MV beamformer can retain the resolution and compensate for the apparent lateral shifting and signal attenuation for the shadowed point scatterers.  相似文献   

17.
In elasticity imaging, the ultrasound frames acquired during tissue deformation are analyzed to estimate the internal displacements and strains. If the deformation rate is high, high-frame-rate imaging techniques are required to avoid the severe decorrelation between the neighboring ultrasound images. In these high-frame-rate techniques, however, the broader and less focused ultrasound beam is transmitted and, hence, the image quality is degraded. We quantitatively compared strain images obtained using conventional and ultrafast ultrasound imaging methods. The performance of the elasticity imaging was evaluated using custom-designed, numerical simulations. Our results demonstrate that signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and spatial resolutions in displacement and strain images acquired using conventional and ultrafast ultrasound imaging are comparable. This study suggests that the high-frame-rate ultrasound imaging can be reliably used in elasticity imaging if frame rate is critical  相似文献   

18.
Modifications were made to a commercial real-time, three-dimensional (3-D) ultrasound system for near simultaneous 3-D scanning with two matrix array transducers. As a first illustration, a transducer cable assembly was modified to incorporate two independent, 3-D intra-cardiac echo catheters, a 7 Fr (2.3 mm O.D.) side scanning catheter and a 14 Fr (4.7 mm O.D) forward viewing catheter with accessory port, each catheter using 85 channels operating at 5 MHz. For applications in treatment of atrial fibrillation, the goal is to place the sideviewing catheter within the coronary sinus to view the whole left atrium, including a pulmonary vein. Meanwhile, the forward-viewing catheter inserted within the left atrium is directed toward the ostium of a pulmonary vein for therapy using the integrated accessory port. Using preloaded, phasing data, the scanner switches between catheters automatically, at the push of a button, with a delay of about 1 second, so that the clinician can view the therapy catheter with the coronary sinus catheter and vice versa. Preliminary imaging studies in a tissue phantom and in vivo show that our system successfully guided the forward-viewing catheter toward a target while being imaged with the sideviewing catheter. The forward-viewing catheter then was activated to monitor the target while we mimicked therapy delivery. In the future, the system will switch between 3-D probes on a line-by-line basis and display both volumes simultaneously.  相似文献   

19.
The guided modes lying in the upper gap-edge band in the photonic band structure of photonic crystals have negative values of refractive index. This feature generates many interesting optical phenomena, and some spectacular photonic devices such as focusing slabs have been developed. We report the design of a photonic-crystal, planoconcave lens for focusing incident parallel light, and theoretically analyze the chromatic aberrations for TM and TE modes. In addition to dielectric photonic crystals, the chromatic aberration of a magnetic photonic-crystal planoconcave lens was investigated because the magnetic permeability may also contribute to the periodic index contrast in photonic crystals, especially at long wavelengths. A significant difference was found in the chromatic aberration for a TM mode propagating in a dielectric than in a magnetic photonic-crystal planoconcave lens.  相似文献   

20.
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号