首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
催化裂化汽油催化改质降烯烃反应规律的试验研究   总被引:11,自引:1,他引:10  
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。  相似文献   

2.
多产异构烷烃的催化裂化工艺(MIP)的工业应用   总被引:5,自引:0,他引:5  
多产异构烷烃的催化裂化工艺(MIP)成功地应用在黑龙江石油化工厂的催化裂化装置上。工业试验结果表明,以大庆常压渣油为原料,采用MIP技术,可以使汽油中的烯烃含量下降20个体积百分点以上,汽油性质全面改善:总液体质量收率增加1.5~3.5个百分点;并具有很好的焦炭和干气选择性。  相似文献   

3.
在九江分公司一套催化装置上进行了降低催化汽油硫含量和烯烃含量的催化裂化催化剂DOS的工业应用试验,试验结果表明,和GRV-C催化剂相比,液态烃、汽油和总液收产率有所增加,干气、焦炭的产率有所下降,反映出DOS催化剂具有裂化能力强、焦炭选择性好的特点。汽油烯烃含量降低7.8个体积百分点,汽油硫含量/原料油硫含量下降20.3ω%,说明DOS催化剂具有较好的降低汽油硫含量和烯烃含量的能力。  相似文献   

4.
对催化裂化装置使用终止剂技术的认识   总被引:1,自引:0,他引:1  
介绍了催化裂化装置终止剂的类型、用量和注入位置等因素在催化裂化反应过程中的作用。在工业装置上考察了终止剂用量和终止剂的注入位置对产物分布、汽油的性质和气体烯烃浓度的影响。结果表明:在控制相近的重油转化深度下,终止剂用量占处理量1%、10%和16%时,焦炭和干气产率均先降低后增加,汽油中烯烃含量和C3中烯烃质量分数则分别降低2.0和1.2个百分点,汽油中异正构烷烃比增加,二烯值降低,诱导期增加超过100min;终止剂注入点由提升管中部移至上部而其他条件不变时,汽油中烯烃和C3中烯烃质量分数分别增加4.2和0.6个百分点。  相似文献   

5.
通过优化催化裂化装置的操作参数可有效提高重油转化率和降低汽油烯烃含量。在工业催化裂化装置上优化结果表明:当系统催化剂的活性由58提到62,油浆产率降低1.14%,干气产率降低0.18%,汽油烯烃含量降低4.5%;当汽油回炼量由原料量的12%增至20%,干气产率降低0-31%,汽油烯烃含量降低6.5%;当剂油接触时间延长0.2s,汽油烯烃含量降低2%;当反应温度降低5℃、再生温度降低20℃时,汽油烯烃含量降低2.2%,干气产率降低0.28%。  相似文献   

6.
催化裂化汽油辅助反应器改质降烯烃技术的工业应用   总被引:10,自引:3,他引:10  
采用中国石油科技中心与中国石油大学(北京)联合开发的催化裂化汽油辅助反应器改质降烯烃技术对抚顺石化公司1.5Mt/a重油催化裂化装置进行了汽油降烯烃改造,增设了处理汽油的提升管+床层反应器、沉降器,且在国内首次采用了单独分馏塔方案。改造结果表明,应用该技术,可使催化裂化汽油烯烃体积分数由50%左右降低至35%以下,甚至可降至20%以下。该技术对产品收率影响较小,标定汽油收率下降5.09~5.30个百分点,轻柴油收率增加2.01~2.33个百分点,液化气收率增加1.52~2.70个百分点,焦炭增加0.20~0.54个百分点,装置综合能耗有所上升。  相似文献   

7.
OCT-M催化裂化汽油选择性加氢脱硫技术   总被引:40,自引:8,他引:32  
介绍了抚顺石油化工研究院开发的OCT-M催化裂化汽油选择性加氢脱硫技术及其在中国石油化工股份有限公司广州分公司0.20ML/a重油催化裂化汽油加氢装置进行首次工业应用试验的情况。该技术将催化裂化汽油切割为轻、重馏分,采用专门的催化剂对重馏分进行选择性加氢脱硫,脱硫后再与轻馏分词合,脱硫率高,汽油烯烃含量降低不大、抗爆指数损失小。工业应用初期标定结果表明:硫质量分数为400-600μg/g、烯烃体积分数为29.6%、研究法辛烷值92.4、马达法辛烷值81.0的重油催化裂化汽油经过该技术处理后,产物汽油硫质量分数为73~89μg/g、烯烃体积分数约21.8%,研究法辛烷值约90.5,马达法辛烷值约80.3,混合汽油质量收率为99.4%,达到了攻关指标。  相似文献   

8.
多产异构烷烃催化裂化工艺(MIP)的工业应用   总被引:6,自引:1,他引:5  
介绍了多产异构烷烃工艺(MIP)在安庆分公司1.2Mt/a催化裂化装置的工业应用情况。运行结果表明,该工艺具有明显降低汽油烯烃含量的效果,汽油烯烃体积分数由约48%降至35%以下;产品分布得到改善,重油催化裂化能力强,汽油产率提高3个百分点,液化石油气产率提高2.5个百分点,柴油产率降低4个百分点,总液体收率提高;汽油硫含量下降20个百分点,硫质量分数降至800μg/g以下。MIP工艺在促进重油转化的基础上,还有效地改善了催化裂化汽油质量。  相似文献   

9.
催化裂化烟气SOx转移助剂的工业应用   总被引:3,自引:1,他引:2  
催化裂化SOx转移助剂CE—0ll在青岛石化厂工业试验的结果表明,该剂在装置上流化正常,与催化剂有较好的配伍性。在原料油性质变差、适当进行操作条件调整的情况下,轻质油和总轻烃液体收率下降,干气、焦炭产率增加;汽油烯烃和芳烃含量增加,饱和烃含量下降;柴油十六烷值增加。烟气中硫分布下降在50%以上,干气中硫分布有所增加,说明加入S0x转移助剂CE—0ll后起到了较好的降低烟气S0x作用。  相似文献   

10.
中国石油化工股份有限公司石油化工科学研究研制的第二代DOCO型降烯烃催化剂,于2002年在中国石油天然气股份有限公司前郭石化分公司0.8Mt/a重油催化裂化装置上进行了工业试验。该催化剂采用高硅铝比的ZRP-5超稳分子筛为主活性组元,并引用了新型基质材料。试验原料为吉林原油常压渣油。试验结果表明,与DOCP型催化剂相比,汽油烯烃体积分数可降低11个百分点,采用该催化剂可在催化裂化装置上直接生产出低烯烃含量的新标准汽油,汽油烯烃体积分数小于35%。研究法辛烷值大于90,轻质产品收率基本不变。该催化剂应采用大剂油比操作和终止剂技术,以创造适宜的二次反应环境。  相似文献   

11.
为适应市场需求增产液化气及丙烯,某公司催化裂化(Ⅱ)装置生产工艺由MIP技术调整为MIP-CGP技术,并对气体分馏等系列装置进行了适应性扩能改造。改造后各装置运行平稳,液化气产量由85.85 t/h提高到117.20 t/h,产率提高了3.00百分点;丙烯产量由24.89 t/h提高到36.04 t/h,产率提高了1.26百分点;产品质量完全满足要求,大大提高了企业的经济效益。此次MIP-CGP技术改造为炼油企业提高液化气与丙烯产量提供了示范。  相似文献   

12.
增产丙烯和生产清洁汽油组分技术的工业试验   总被引:9,自引:0,他引:9  
在中国石油化工股份有限公司镇海炼油化工股份有限公司1.8M t/a的重油催化裂化装置上进行了增产丙烯和生产清洁汽油组分(M IP-CGP)技术的工业试验。工业试验结果表明,采用M IP-CGP技术,丙烯质量收率最高可达8.16%;汽油中的烯烃体积分数最低可降至18%以下。与原来采用的催化裂化工艺相比,汽油与原料油的硫含量(质量分数)之比下降50%~65%,辛烷值提高1.0~1.6个单位;总液体(液化气、汽油、柴油)质量收率约增加1%。该技术具有良好的技术经济效益和社会效益。  相似文献   

13.
MIP-CGP技术专用催化剂CGP-C的工业应用   总被引:2,自引:1,他引:1  
MIP-CGP技术及专用催化剂CGP-C在中原油田石化总厂重油催化裂化(RFCC)装置上进行了工业应用,结果表明:和技术改造前相比,在原料油性质相近的情况下,稳定汽油中烯烃体积分数下降,可以达到20.5%,丙烯产率明显增加,可以达到8.53%,总液体收率(液化气+汽油+柴油)达到85.57%,稳定汽油RON达到91.9,MON达到82。CGP-C催化剂具有很好的产品选择性和抗金属污染性能。  相似文献   

14.
分析对比了MIP-CGP工艺与辅助提升管工艺对汽油的改质效果。结果表明,辅助提升管控制汽油烯烃含量较为灵活,且降烯烃效果显著;MIP-CGP工艺有利于提高汽油的辛烷值;采用MIP-CGP工艺液化石油气(LPG)及丙烯收率均较高,改质后,LPG中的丙烯质量分数可增加5.21个百分点,丙烯收率达到7.058%。  相似文献   

15.
石油化工科学研究院研制的CGP-1GQ催化剂在中国石化上海高桥分公司1.40 Mt/a MIP装置上的工业应用结果表明,使用CGP-1GQ催化剂后,装置液化气产率达到18.71%,液化气中丙烯体积分数达到37.74%。液体收率、掺渣能力基本保持不变,装置汽油性质有所改善。表明CGP-1GQ催化剂用于MIP装置具有改善汽油性质和增产丙烯的效果。  相似文献   

16.
MIP-CGP工艺专用催化剂CGP-1的开发与应用   总被引:11,自引:3,他引:8  
阐述了生产汽油组分满足欧Ⅲ排放标准并多产丙烯的催化裂化工艺(简称MIP-CGP)专用催化剂(简称CGP-1)的研究开发与工业应用结果。CGP-1催化剂的基质具有良好的容炭性能,使活性组元受到良好保护,其优势作用在第二反应区得以充分发挥,具有更高的氢转移活性和强的汽油小分子烯烃裂化活性。中国石化九江分公司和镇海炼化公司的MIP-CGP工业试验标定结果表明,与常规FCC相比,采用CGP-1催化剂的MIP-CGP技术在生产烯烃体积分数小于18%的汽油组分的同时,丙烯产率达到8%以上。此外,汽油诱导期大幅提高,抗爆指数增加;总液体收率有所提高,干气产率下降,焦炭选择性良好。  相似文献   

17.
介绍了多产丙烯和低硫燃料油组分的催化裂化与加氢脱硫(MFP)技术在催化裂化装置的改造内容、工业试验以及工业应用。以MIP-CGP工艺为空白标定,对比了在专用催化剂占系统藏量50%和80%时MFP工艺操作条件和产品分布的变化。结果表明,采用MFP技术后,产物氢分布改善,液化气中丙烯和异丁烯含量大幅增加,低碳烯烃收率和选择性得到提高,并且维持了干气量和生焦量的稳定。催化裂化技术从追求高转化率向高选择性的转变,实现了碳氢资源高效利用;同时可以根据市场需求变化灵活调整生产方案,实现经济效益的最大化。  相似文献   

18.
CGP-2催化剂的开发及其在MIP-CGP装置中的应用   总被引:1,自引:0,他引:1  
阐述了降低催化裂化汽油烯烃、硫含量,同时多产丙烯的催化剂CGP-2的研究开发与工业应用结果。CGP-2催化剂具备良好的水热稳定性,可以适应MIP-CGP工艺的双反应区尤其是第二反应区对于降低汽油馏分烯烃和硫含量的需求,此外,该催化剂还有着很强的重油裂化和抗重金属污染能力。基质中添加的L酸碱对组分,可作为对硫化物有选择性吸附和催化转化作用的活性中心。中石化沧州分公司的工业试验结果表明:CGP-2催化剂除了兼有CGP-1Z催化剂良好的产品分布和汽油性质的特点,还增加了降硫功能,汽油硫含量降低30.32%,汽油诱导期增加;丙烯产率进一步提高,焦炭选择性良好。使得沧州MIP-CGP装置生产的汽油,可满足2005年7月全国实施的新汽油标准。  相似文献   

19.
为增产高附加值产品聚丙烯,中国石化海南炼油化工有限公司催化裂化装置(采用多产异构化烷烃和增产丙烯的清洁汽油生产工艺)使用了增产丙烯助剂P—PLUS。使用助剂后,丙烯产品收率增加了0.87%,作为高附加值高辛烷值甲基叔丁基醚原料的异丁烯的收率也提高了0.73%,目标产品液化石油气+汽油+柴油的收率提高了2.03%。  相似文献   

20.
多产清洁汽油和丙烯的FCC新工艺MIP-CGP的应用   总被引:3,自引:0,他引:3  
对中国石油化工股份有限公司沧州分公司1.0 Mt/a的FCC装置,采用中国石油化工股份有限公司石油化工科学研究院开发的MIP-CGP(Maximizing Iso-Paraffins-Cleaner Gasoline and Propylene)工艺技术进行了改造,装置改造后于2004年6月19日开工.生产标定结果表明:在催化剂活性较低条件下,汽油烯烃体积分数降低到31.9%,下降了14.9百分点;丙烯产率增加了2.97百分点;汽油的辛烷值RON和MON分别增加了1.9和2.0,从而提高了汽油的抗爆指数;汽油中硫含量下降了42.67%;在改善精制汽油性质的同时,还显著提高了总液体产品收率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号