首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deeply-etched ${hbox{SiO}}_{2}$ optical ridge waveguides are fabricated and characterized. A detailed discussion of the fabrication process (especially for the deep etching process) is presented. The measured propagation losses for the fabricated waveguides with different core widths range from $0.33sim {hbox {0.81}}~{hbox {dB}}/{hbox {mm}}$. The loss is mainly caused by the scattering due to the sidewall roughness. The losses in bending sections are also characterized, which show the possibility of realizing a small bending radius (several tens of microns). 1 $,times {rm N}$ ( ${rm N}=2$, 4, 8) multimode interference couplers based on the deeply-etched ${hbox{SiO}}_{2}$ ridge waveguide are also fabricated and show fairly good performances.   相似文献   

2.
GaInAsSb–GaSb strained quantum-well (QW) ridge waveguide diode lasers emitting in the wavelength range from 2.51 to 2.72 $ mu{hbox {m}}$ have been grown by molecular beam epitaxy. The devices show ultralow threshold current densities of 44 $hbox{A}/{hbox {cm}}^{2}$ (${L}rightarrow infty $) for a single QW device at 2.51 $ mu{hbox {m}}$, which is the lowest reported value in continuous-wave operation near room temperature (15 $^{circ}hbox{C}$) at this wavelength. The devices have an internal loss of 3 ${hbox {cm}}^{-1}$ and a characteristic temperature of 42 K. By using broader QWs, wavelengths up to 2.72 $mu{hbox {m}}$ could be achieved.   相似文献   

3.
In this paper, we describe a new structure design for producing low-threshold, high-efficiency, and high-brightness 0.98-$mu{hbox {m}}$ lasers. In this structure, we incorporated a self-discriminating weak optical confinement asymmetrical waveguide coupled to passive waveguides, and an active region based on three InGaAs quantum wells (QWs) coupled to Te n-type $delta$-doping. Optimized coupling between the $delta$-doping and the three QWs, together with waveguide optimization and doping profile optimization, yields $J_{rm th}=98 {hbox {A/cm}}^{2}$ per QW, ${T}_{0}=80;^{circ}hbox{C}$, and a far-field central lobe angle of $sim 10^{circ}$.   相似文献   

4.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

5.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

6.
This paper describes a system architecture and CMOS implementation that leverages the inherently high mechanical quality factor (Q) of a MEMS gyroscope to improve performance. The proposed time domain scheme utilizes the often-ignored residual quadrature error in a gyroscope to achieve, and maintain, perfect mode-matching (i.e., $sim$0 Hz split between the high-Q drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS IC and control algorithm have been interfaced with a 60 $mu{hbox {m}}$ thick silicon mode-matched tuning fork gyroscope $({rm M}^{2}mathchar"707B {rm TFG})$ to implement an angular rate sensing microsystem with a bias drift of 0.16$^{circ}/{hbox{hr}}$. The proposed technique allows microsystem reconfigurability—the sensor can be operated in a conventional low-pass mode for larger bandwidth, or in matched mode for low-noise. The maximum achieved sensor Q is 36,000 and the bandwidth of the microsensor can be varied between 1 to 10 Hz by electronic control of the mechanical frequencies. The maximum scale factor of the gyroscope is 88 ${hbox{mV}}/^{circ}/{hbox{s}}$ . The 3$~$ V IC is fabricated in a standard 0.6 $ mu{hbox {m}}$ CMOS process and consumes 6 mW of power with a die area of 2.25 ${hbox {mm}}^{2}$.   相似文献   

7.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

8.
A four-element phased-array front-end receiver based on 4-bit RF phase shifters is demonstrated in a standard 0.18- $mu{{hbox{m}}}$ SiGe BiCMOS technology for $Q$-band (30–50 GHz) satellite communications and radar applications. The phased-array receiver uses a corporate-feed approach with on-chip Wilkinson power combiners, and shows a power gain of 10.4 dB with an ${rm IIP}_{3}$ of $-$13.8 dBm per element at 38.5 GHz and a 3-dB gain bandwidth of 32.8–44 GHz. The rms gain and phase errors are $leq$1.2 dB and $leq {hbox{8.7}}^{circ}$ for all 4-bit phase states at 30–50 GHz. The beamformer also results in $leq$ 0.4 dB of rms gain mismatch and $leq {hbox{2}}^{circ}$ of rms phase mismatch between the four channels. The channel-to-channel isolation is better than $-$35 dB at 30–50 GHz. The chip consumes 118 mA from a 5-V supply voltage and overall chip size is ${hbox{1.4}}times {hbox{1.7}} {{hbox{mm}}}^{2}$ including all pads and CMOS control electronics.   相似文献   

9.
A low power audio oversampling $Sigma Delta $ digital-to-analog converter (DAC) with a three-level $(+1,~0,-1)$ dynamic-element-matching (DEM) technique and an inter-symbol interference-free (ISI) output stage is presented. Solutions for design challenges such as ISI, clock jitter sensitivity, and out-of-band noise are presented. The converter is fabricated in a 0.18 $mu{hbox {m}}$ CMOS process, occupies 0.55 ${hbox {mm}}^{2}$, achieves 108 dB dynamic range, $-98~{rm dB ~THD}+{rm N}$ while consumes a total of 1.1 mW per channel at 1.8 V supply.   相似文献   

10.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

11.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

12.
A self-oscillating mixer that employs both the fundamental and harmonic signals generated by the oscillator subcircuit in the mixing process is experimentally demonstrated. The resulting circuit is a dual-band down-converting mixer that can operate in $C$ -band from 5.0 to 6.0 GHz, or in $X$-band from 9.8 to 11.8 GHz. The oscillator uses active superharmonic coupling to enforce the quadrature relationship of the fundamental outputs. Either the fundamental outputs of the oscillator or the second harmonic oscillator output signals that exists at the common-mode nodes are connected to the mixer via a set of complementary switches. The mixer achieves a conversion gain between 5–12 dB in both frequency bands. The output 1-dB compression points for both modes of the mixer are approximately $-{hbox{5 dBm}}$ and the output third-order intercept point for $C$ -band and $X$ -band operation are 12 and 13 dBm, respectively. The integrated circuit was fabricated in 0.13-$mu {hbox{m}}$ CMOS technology and measures ${hbox{0.525 mm}}^{2}$ including bonding pads.   相似文献   

13.
An edge missing compensator (EMC) is proposed to approach the function of an ideal PD with $pm 2 ^{N-1} times 2pi $ linear range with $N$-bit EMC. A PLL implemented with a 9-bit EMC achieves 320 MHz frequency hopping within 10 $~mu{hbox {s}}$ logarithmically which is about 2.4 times faster than the conventional design. The reference spur of the PLL is ${-}{hbox {48.7~dBc}}$ and the phase noise is ${-}hbox{88.31~dBc/Hz}$ at 10 kHz offset with $K_{rm VCO}= -$ 2 GHz/V.   相似文献   

14.
In cascaded $DeltaSigma$ modulators (DSMs), the quantization noise of the earlier stage leaks to the output unless completely cancelled by the digital noise cancellation filter (NCF). The noise leakage is worse in the continuous-time (CT) implementation due to the poorly controlled time constant of the analog loop filter. A parameter-based continuous-time to discrete-time transform is developed to get an exact digital NCF, and the analog filter time constant is calibrated to match with the digital NCF. A binary pulse tone is injected into the quantizer to detect the filter time-constant error, and eliminated by zero-forcing its residual power based on the adaptive least-mean-square (LMS) algorithm. A 2-1-1 cascaded CT-DSM prototype in 0.18-$mu{hbox {m}}$ CMOS demonstrates that the spectral density of the leaked noise is lower than 10 ${rm nV}/surd{hbox {Hz}}$ after the capacitors in the Gm-C loop filters are trimmed with 1.1% step. With a 1- ${rm V}_{rm pp}$ full-scale input, it achieves a dynamic range of 68$~$ dB within 18-MHz bandwidth at an over-sampling ratio of 10. The analog core and the digital logic occupy 1.27 ${hbox {mm}}^{2}$, and consume 230 mW at 1.8 V.   相似文献   

15.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

16.
Newly proposed mobility-booster technologies are demonstrated for metal/high- $k$ gate-stack n- and pMOSFETs. The process combination of top-cut SiN dual stress liners and damascene gates remarkably enhances local channel stress particularly for shorter gate lengths in comparison with a conventional gate-first process. Dummy gate removal in the damascene gate process induces high channel stress, because of the elimination of reaction force from the dummy gate. PFETs with top-cut compressive stress liners and embedded SiGe source/drains are performed by using atomic layer deposition TiN/$ hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$ on (100) substrates. On the other hand, nFETs with top-cut tensile stress liners are obtained by using $hbox{HfSi}_{x}/hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$. High-performance n- and pFETs are achieved with $I_{rm on} = hbox{1300}$ and 1000 $muhbox{A}/muhbox{m} hbox{at} I_{rm off} = hbox{100} hbox{nA}/mu hbox{m}$, $V_{rm dd} = hbox{1.0} hbox{V}$, and a gate length of 40 nm, respectively.   相似文献   

17.
The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3$sigma $) over the temperature range from $-{hbox{22}},^{circ}{hbox{C}}$ to 85$,^{circ}{hbox{C}}$ . Fabricated in a baseline 65$~$nm CMOS technology, the frequency reference circuit occupies 0.11$ hbox{mm}^{2}$ and draws 34 $ muhbox{A}$ from a 1.2 V supply at room temperature.   相似文献   

18.
We have studied a bottom-gate polycrystalline-silicon thin-film transistor (poly-Si TFT) with amorphous-silicon (a-Si) ${rm n}^{+}$ contacts and center-offset gated structure, where intrinsic poly-Si is used in the center-offset region. The fabrication process is compatible with the conventional a-Si TFT with addition of thermal annealing for crystallization of a-Si. The bottom-gate poly-Si TFT with a 5-$muhbox{m}$ offset length exhibited a field-effect mobility of 18.3 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$ and minimum OFF-state current of $hbox{2.79} times hbox{10}^{-12} hbox{A}/muhbox{m}$ at $V_{rm ds} = hbox{5} hbox{V}$. The leakage currents are two orders of magnitude lower than those of a nonoffset TFT with mobility drop from 23.8 to 18.3 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$.   相似文献   

19.
A wideband phase-locked loop (PLL)-based G/FSK transmitter (TX) architecture is presented in this paper. In the proposed TX, the G/FSK data is applied outside the loop; hence, the data rate is not constrained by the PLL bandwidth. In addition, the PLL remains locked all the time, preventing the carrier frequency from drifting. In this architecture, the G/FSK modulation signal is generated from a proposed Sigma-Delta modulated Phase Rotator $(SigmaDelta{hbox{-PR}})$. By properly combining the multi-phase signals from the PLL output, the $SigmaDelta{hbox{-PR}}$ effectively operates as a fractional frequency divider, which can synthesize modulation signals with fine-resolution frequencies. The proposed $SigmaDelta{hbox{-PR}}$ adopts the input signal as the phase transition trigger, facilitating a glitch-free operation. The impact of the $SigmaDelta{hbox{-PR}}$ on the TX output noise is also analyzed in this paper. The proposed TX with the $SigmaDelta{hbox{-PR}}$ is digitally programmable and can generate various G/FSK signals for different applications. Fabricated in a 0.18 $muhbox{m}$ CMOS technology, the proposed TX draws 6.3 mA from a 1.4 V supply, and delivers an output power of $-$11 dBm. With a maximum data rate of 6 Mb/s, the TX achieves an energy efficiency of 1.5 nJ/bit.   相似文献   

20.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号