首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic and optical properties of polycarbonate (PC)/Fe nanocomposite films prepared by a solution blended process and the role of Fe additives are investigated. The saturation magnetization of the PC/Fe nanocomposites depends on the weight of Fe nanoparticles. Meanwhile, an increase of photoluminescence (PL) intensity with decreasing Fe additives is interpreted. The optical band gap corresponds to the increase of PL elements. The transmittance of the films increases with reduced Fe, and the PL peak energy of PC/Fe composites is also correlated to the weight ratio.  相似文献   

2.
The size effect of optical properties of the polycrystalline Ge/Si films prepared by pulse laser deposition (PLD) is investigated by photoluminescence (PL) and photocurrent (PC) spectra. The size of Ge nanocrystals is precisely controlled by the pulsed deposition time and then observed by the atomic force microscopy (AFM). The average size of Ge nanocrystals is about 2, 5 and 25 nm for 1, 2 and 3 min deposited sample, respectively. The size effect on optical properties of Ge nanocrystals has been analyzed by photoluminescence (PL) and photocurrent (PC) spectra. The PL peaks shift from 0.799 eV for 1 min to 0.762 eV for 3 mins; at the same time, the photocurrent peaks of the films sharply changes from 0.781 eV to 0.749 eV, the shifts of PL and PC are contributed to the quantum size effect of Ge nanocrystals.  相似文献   

3.
Nanostructured Fe doped ZnO thin films were deposited onto glass substrates by sol–gel spin coating method. Influence of Fe doping concentration and annealing temperature on the structural, compositional, morphological and optical properties were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–Vis spectroscopy and photoluminescence (PL) measurements. XRD analysis showed that all the films prepared in this work possessed a hexagonal wurtzite structure and were preferentially oriented along the c-axis. Pure ZnO thin films possessed extensive strain, whereas Fe doped films possessed compressive strain. In the doped films, least value of stress and strain was observed in the 0.5 at.% Fe doped thin film, annealed at 873 K. Average crystallite size was not significantly affected by Fe doping, but it increased from 15.57 to 17.79 nm with increase in annealing temperature from 673 to 873 K. Fe ions are present in +3 oxidation state as revealed by XPS analysis of the 0.5 at.% Fe doped film. Surface morphology is greatly affected by changes in Fe doping concentration and annealing temperature which is evident in the SEM images. The increase in optical band gap from 3.21 to 3.25 eV, with increase in dopant concentration was attributed to Moss–Burstein shift. But increase in annealing temperature from 673 to 873 K caused a decrease in band gap from 3.22 to 3.20 eV. PL spectra showed emissions due to excitonic combinations in the UV region and defect related emissions in the visible region in all the investigated films.  相似文献   

4.
Results of photoconductivity (PC) and photoluminescence (PL) are presented for films of (Cd0.95–Pb0.05)S:CdCl2,Dy/Y prepared at 60 °C and RT on glass substrates. PC is found to be enhanced in films prepared at 60 °C particularly in presence of impurities. PL is found to be stronger in films prepared at RT. While films prepared in presence of Dy show one peak in green yellow region, those prepared in presence of Y show two peaks one in blue and other in green yellow regions. Results of SEM, XRD, and optical absorption spectra, which have been used to characterize the materials, are presented. Photovoltaic efficiency in (Cd0.95–Pb0.05)S:CdCl2,Dy films has been found to be ∼5%.  相似文献   

5.
用射频溅射法制备了金属 /半导体 Fex(In2 O3) 1-x 颗粒膜。实验结果表明 :纳米尺度的Fe颗粒比较均匀地分布在非晶态母体In2 O3 中。退火可使In2 O3 晶化。该样品在室温下表现出超顺磁驰豫 ,符合Langevin方程。光学测量表明 :嵌Fe的磁性颗粒膜 ,其电子的带间跃迁由In2 O3 的直接跃迁变为间接跃迁 ,基本吸收边红移 ;随磁性增强 ,局域态尾变宽 ,带隙变窄  相似文献   

6.
TiO2 thin films were deposited onto quartz substrates by RF magnetron sputtering. Inorder to investigate the effect of film thickness on the structural and optical properties, films were deposited for different time durations, and post-annealed at 873 K. The influence of annealing atmosphere (air/oxygen) on the film properties was also investigated. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopy and photoluminescence (PL) spectroscopy. Films deposited at different time durations are amorphous-like in nature. From XRD patterns it can be inferred that deposition for longer duration is essential for achieving crystallisation in TiO2 thin films prepared by RF magnetron sputtering. The films exhibited good adherence to the substrate and are crack free as revealed by SEM images. Film thickness was found to increase with increase in sputtering time. The optical band gap of the films was found to decrease with increase in film thickness, which is consistant with XRD observations. Film thickness did not show any significant variation when annealed in both air and oxygen. Defect related PL emission in the visible region (blue) was observed in all the investigated films, which suggests the application of these films in optoelectronic display devices.  相似文献   

7.
PbS nanoparticles and smooth nanocrystalline thin films (nc-PbS) were prepared by chemical precipitation from aqueous solutions. Polyethylene oxide and isopropyl alcohol were used as additives in the aqueous solution, which results in the enhancement of the blue luminescence of PbS thin films. The introduction of isopropyl reduced the grain size and increases the optical gap of the PbS particles. The size of PbS particles was estimated to be ~ 3.5 nm. The broad emission bands exhibited were composed by a multiple overlapping peaks. The photoluminescence (PL) intensity was significantly influenced by the excitation wavelength. Indeed, intense blue luminescence was obtained under 230 nm compared to that obtained under 325 nm excitation wavelength. The PL emission from PbS nanoparticles was less intense than the luminescence of PbS thin films. The high PL intensity of the thin films was attributed to the lower density of defects introduced in the thin films during the chemical bath deposition growth process compared the defects density of PbS powder.  相似文献   

8.
The Mn-doped ZnO (Zn1 − xMnxO) thin films with manganese compositions in the range of 0-8 at.% were deposited by radio-frequency (RF) magnetron sputtering on quartz glass substrates at room temperature (RT). The influence of Mn concentration on the structural, electrical and optical properties of Zn1 − xMnxO films has been investigated. X-ray diffraction (XRD) measurements reveal that all the films are single phase and have wurtzite structure with (002) c-axis orientation. The chemical states of Mn have been identified as the divalent state of Mn2+ ions in ZnO lattice. As the content of Mn increases, the c-lattice constant and the optical band gap of the films increase while the crystalline quality deteriorates gradually. Hall-effect measurements reveal that all the films are n-type and the conductivity of the films has a severe degradation with Mn content. It is also found that the intensity of RT photoluminescence spectra (PL) is suppressed and saturates with Mn doping.  相似文献   

9.
氧分压对磁控溅射ZnO薄膜生长行为和光学特性的影响   总被引:2,自引:0,他引:2  
采用反应射频磁控溅射方法, 在Si(001)基片上制备了具有高$c$轴择优取向的ZnO薄膜. 利用原子力显微镜、X射线衍射、透射光谱和室温光致荧光光谱等分析技术, 研究了氧分压对薄膜的表面形貌和光学特性的影响. 研究结果显示: 0.04~0.23Pa的氧分压范围内, ZnO薄膜存在三个不同的生长模式, 薄膜生长模式转变的临界氧分压分别位于0.04~0.08Pa和0.16~0.19Pa之间; 在0.16Pa以下时, ZnO薄膜的表面岛呈+c取向的竹笋状生长; 当氧分压>0.19Pa时, 薄膜的表面岛以-c取向生长为主; ZnO薄膜的折射率、光学带隙宽度以及PL光谱强度均随着氧分压的增大而增大, 氧分压为0.19Pa时, 薄膜的发光峰最窄, 其半峰宽为88meV.  相似文献   

10.
BaTiO3:Eu (BT:Eu) thin films were deposited onto quartz substrates by RF magnetron sputtering. The effect on structural, morphological, optical and photoluminescence (PL) properties in the films with different Eu concentrations (0–5 wt%) were investigated. The X-ray diffraction (XRD) pattern of the undoped BT thin film revealed a tetragonal (T) phase with orientations along (101) plane. From XRD pattern, the crystallinity of the films increased with increase in Eu concentration. The SEM images revealed that the films exhibited tetragonal shape, crack free and good adherence to the substrate. Atomic force microscopy studies showed an increase of grain growth with doping concentration. The rms roughness value increased with increase in Eu concentration and the film surface revealed positive skewness and high value of kurtosis which make them suitable for tribological applications. X-ray photoelectron spectroscopy revealed the presence of barium, titanium, europium and oxygen in BT:Eu film. An average transmittance of >80 % (in visible region) was observed for all the films. Optical band gap of Eu doped BT films decreased from 3.86 to 3.53 eV. Such films with optical properties such as high transparency, decrease in band gap and high refractive index are suitable for optoelectronic applications. PL properties showed a sharp line at 625 nm and a broad line at 552 nm due to europium (Eu3+) transitions. PL phenomena were observed, owing to the electronic structure of Eu3+ ions as well as BT nanocrystallites in the films. The sharp and intense red luminescence is useful for photoelectric devices and optical communications.  相似文献   

11.
GaSb films with AlSb/GaSb compound buffer layers were grown by molecular beam epitaxy on GaAs (001) substrates. The crystal quality and optical properties were studied by high resolution transition electron microscopy and low temperature photoluminescence spectra (PL), respectively. It was found that the AlSb/GaSb compound buffer layers can restrict the dislocations into GaSb epilayers. The intensity of PL spectra of GaSb layer becomes large with the increasing the periods of AlSb/GaSb superlattices, indicating that the optical quality of GaSb films is improved.  相似文献   

12.
The effects of incorporating ε‐polylysine (ε‐PL) on mechanical, barrier, optical properties and the antimicrobial activity of edible films from silver carp surimi were investigated. The mechanical properties of surimi films could be improved using ε‐PL below the level of 0.15% in surimi film‐forming solutions, whereas these slightly declined with increasing addition of ε‐PL. However, accelerated polymerization of surimi myosin heavy chain by the addition of ε‐PL was too low to be observed from sodium dodecyl sulfate polyacrylamide gel electrophoresis patterns. It is of interest to notice that surimi films containing ε‐PL revealed a wide range of antimicrobial activity, especially against gram‐positive bacteria. For preservation of fresh fish meats with the help of edible films, the increase of total viable counts and total volatile basic nitrogen values was suppressed during storage at 4°C, indicating that the application of surimi films containing ε‐PL could prolong the shelf life of fresh fish meats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
ZnO thin films with different buffer layer thicknesses were grown on Si and porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and buffer layer thickness on the structural and optical properties of ZnO thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO buffer layers, the intensity of the (002) diffraction peak for the ZnO thin films and its full width at half maximum (FWHM) decreased with an increase in the thickness of the ZnO buffer layers, indicating an improvement in the crystal quality of the films. On introducing PS as a substrate, the grain sizes of the ZnO thin films became larger and their residual stress could be relaxed compared with the ZnO thin films grown on Si. The intensity ratio of the ultraviolet (UV) to visible emission peak in the PL spectra of the ZnO thin films increased with an increase in buffer layer thickness. Stronger and narrower UV emission peaks were observed for ZnO thin films grown on PS. Their structural and optical properties were enhanced by increasing the buffer layer thickness. In addition, introduction of PS as a substrate enhanced the structural and optical properties of the ZnO thin films and also suppressed Fabry-Perot interference.  相似文献   

14.
氢化碳化硅薄膜作为一种宽带隙的半导体材料,具有优越的物理特性,其在光电子器件上的潜在应用引起了人们的兴趣。利用等离子增强化学气相沉积(PECVD)系统制备了一系列氢化碳化硅薄膜,通过改变反应前驱物及流量比调节薄膜的室温光致发光性质。实验发现在一定范围内随着流量比R(CH_4/SiH_4)的提高,氢化碳化硅薄膜的光致发光峰位蓝移且发光强度增强;同时反应前驱物中的氢会极大影响氢化碳化硅薄膜的发光强度。通过椭偏仪(Ellipsometer)测量了薄膜的光学常数,发现薄膜沉积速率随着流量比R的增加而降低;傅里叶红外光谱仪(FTIR)测试表明Si-C有序度随着流量比的增加而增大。同时研究了三维纳米线结构对多态碳化硅薄膜发光性质的影响。光致发光测试结果表明三维纳米线结构可以有效提高薄膜的光致发光强度。  相似文献   

15.
The deposition of hydrogenated amorphous silicon carbide (a-SiC:H) films from a mixture of silane, acetylene and hydrogen gas using the electron cyclotron resonance chemical vapor deposition (ECR-CVD) process is reported. The variation of the deposition and film characteristics such as the deposition rate, optical bandgap, photoluminescence and the infra-red (IR) absorption as a function of the hydrogen dilution is investigated. The deposition rate increases to a maximum value of 250 Å/min at a moderate hydrogen dilution ratio of 20 [hydrogen flow (sccm)/acetylene + silane flow (sccm)], and decreases in response to a further increase in the hydrogen dilution. There is no strong dependence of the optical bandgap of the hydrogen dilution within the dilution range investigated (10 to 60), and the optical bandgap calculated from the E04 method varied marginally from 2.85 eV to 3.17 eV. The room temperature photoluminescence (PL) peak energy and intensity showed a prominent shift to a maximum value of 2.17 eV corresponding to maximum PL intensity at a moderate hydrogen dilution of 30. The PL intensity showed a strong dependence on the hydrogen dilution variation. IR absorption results show that films deposited at higher hydrogen dilution have more Si---C bonding.  相似文献   

16.
目的研究常见类型添加剂对BOPP(双向拉伸聚丙烯)薄膜表面光泽度和雾度的影响。方法通过测试BOPP薄膜的表面光泽度、雾度,对比分析不同类型添加剂对BOPP薄膜光学性能的影响。结果氢化石油树脂与芯层PP有良好的相容性,有利于改善BOPP薄膜的表面光泽度和透明性,质量分数为5%~20%的氢化石油树脂可以使BOPP薄膜的光泽度由88%提高到95%,雾度由1.7%降至0.8%,增透效果明显。抗静电剂(烷基二乙醇胺、单甘酯)和爽滑剂(硅酮类、芥酸酰胺)与PP有部分相容性,在迁移过程中不同程度地影响了BOPP薄膜的光学性能。在烷基二乙醇胺与单甘酯复配的抗静电体系中,烷基二乙醇胺的添加有利于BOPP薄膜光学性能的提高,单甘酯含量的提高明显恶化了薄膜的光学性能,芥酸酰胺的添加造成BOPP薄膜光泽度下降,雾度增加,苯基改性硅酮比普通硅酮更有利于提高BOPP薄膜表面的光泽度与透明性。抗粘连剂二氧化硅与表层PP不相容,形成了界面,在二氧化硅含量大于0.15%(质量分数)时,雾度迅速提高,光泽度下降。结论薄膜生产配方中添加剂的选择与优化是开发高表面光泽度低雾度BOPP薄膜的关键。  相似文献   

17.
The optical and photoluminescence (PL) properties of nanocrystalline 3C-SiC films and the effect of the boundary regions between the nanocrystals were studied for two sets of films: (a) films with 10-15 nm nanocrystal size obtained by direct ion deposition method and (b) similar films annealed in oxygen at 850-950 °C. It was shown that annealing of the nanocrystalline SiC films resulted in weaker absorption in a broad spectral range, and to the increase of the optical band gap from 1.8 to 2.2 eV. On the contrary, the edge PL bands in the UV range (2.2 to 2.4 eV) remained similar. In the IR range, three maxima absent in the as-grown films, appeared at 1.52 eV, 1.56 eV and 1.63 eV. Measurement of the intensity of PL maxima as a function of the excitation power showed a nonlinear dependence that was attributed to the onset of stimulated emission.  相似文献   

18.
The deposition of hydrogenated amorphous silicon carbide (a-SiC.H) films from a mixture of silane, acetylene and hydrogen gas using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) process is reported. The variation of the deposition and film characteristics such as the deposition rate- optical bandgap, photoluminescence and the infra-red (IR) absorption as a function of the hydrogen dilution is investigated. The deposition rate increases to a maximum value of ~25 nm/min at a moderate hydrogen diIution ratio of ~20 [hydrogenflow (sccm)/acetylene+silane flow (sccm)], and decreases in response to a further increase in the hydrogen dilution. There is no strong dependence of the optical bandgap on the hydrogen dilution within the dilution range investigated (10 to 60), and the optical bandgap calculated from the E04 method varied marginally from ~2.85 eV to ~3.17 eV. The room temperaturephotoluminescence (PL) peak energy and intensity shows a prominent shift to a maximum value of ~2.17 eV corresponding to maximum PL intensity at a moderate hydrogen diIution of ~30.The PL intensity shows a strong dependence on the hydrogen dilution variation. IR absorption results show that films deposited at higher hydrogen dilution have more Si-C bonding.  相似文献   

19.
Unique structures of TiO2 films were prepared on F-doped SnO2 transparent conductive films in aqueous solutions. They were then covered with dye-labeled proteins. Firstly, influence of film thickness on photoluminescence intensity (PL) and photocurrent (PC) was investigated. PL and PC were improved with the decrease of film thickness. Especially, PC was drastically improved to more than 30 times with the decrease of film thickness. Secondly, a novel technique of solution aging method was applied to form TiO2 structures. PC was successfully improved with this technique. They were candidate materials for bio-semiconductor hybrid devices such as protein sensors.  相似文献   

20.
直流磁控溅射功率对溅射生长GZO薄膜光电性能的影响   总被引:1,自引:0,他引:1  
本文采用直流磁控溅射沉积系统在玻璃基底上沉积镓掺杂氧化锌(GZO)薄膜,将溅射功率从120W调整到240W,步长为30W,研究功率变化对GZO薄膜的晶体结构、表面形貌、光学性能和电学性能的影响。结果表明,溅射功率对GZO薄膜电阻率有显著的影响。溅射功率为210W时薄膜呈现最低电阻率为3.31×10~(-4)Ω·cm,可见光波段平均光学透光率接近84%。随着溅射功率的增加,薄膜表面形貌和生长形态发生较大变化,并直接得到具有一定凸凹不平的微结构,GZO薄膜的致密性先增加后降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号