首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to enhance structural robustness of microfactory machine elements the foam-composite sandwich structure was introduced. Unidirectional carbon/epoxy prepreg as skin materials and PVC foams as core materials were used to construct the sandwich structures. The existing aluminum column and the column block were replaced by foam-composite sandwich structures with appropriate rib geometries and configurations. The stacking sequences and rib configurations were determined by finite element analyses. The damping capacity was also investigated by vibration tests preparing beam type composite and foam-composite sandwich specimens with various stacking sequences and thickness ratios. The prototype of the column and the column block were fabricated using proper moulds and processes and finally, the system performances such as dynamic robustness and damping capacity were verified by comparison with the existing aluminum system.  相似文献   

2.
In this paper, an imperfection detecting machine which has composite–aluminium hybrid beam structure with high-modulus carbon/epoxy composites in order to enhance dynamic stiffness and damping capacity of the structure is introduced. For the optimal design of the composite-aluminium hybrid beam structure, geometric shape of cross-section of aluminium beam, the stacking sequence and thickness of composite which is to be reinforced onto the aluminium beam are determined by considering the fundamental natural frequency and deformation of the structure under service conditions. The dynamic characteristics of the structure are analyzed by the finite element method, and the results show good agreement with the modal testing results.

In addition, new designs of beam structure are also proposed for the next generation inspecting system which has much longer beam length. Parametric study for composite X-axis beam system and optimisation scheme of joint inserts are performed in the designing process.  相似文献   


3.
Carbon–phenolic woven composites are increasingly employed as the material for the heavy-duty journal bearings. Since the through thickness compressive strength (TTCS) is important for the heavy-duty bearing, in this paper, the effects of lay-up angles and specimen thickness of woven composites on TTCS were investigated for the efficient design of carbon–phenolic woven composite bearings. From the experiments and FEM analysis, it was found that the TTCS of the carbon–phenolic woven composite is much dependent on the stacking sequence rather than composite thickness because different stacking sequence produced much different interlaminar stresses.  相似文献   

4.
摘 要:螺杆转子磨床床身是关键的承载大件,其动静态性能的好坏将直接影响整机的加工精度和稳定性。为实现床身的快速动态优化设计,首先基于元结构理论,使用ANSYS软件仿真分析了床身筋格元结构各主要参数对其动态特性的影响。在此基础上,以提高床身低阶模态固有频率和降低床身重量为目标,对床身的结构参数进行优化,同时通过静力分析验证了优化方案的可行性。优化后,床身低阶固有频率得到了较大幅度的提高,其中一阶固有频率提高了22.3%,床身的重量下降了8.39%,同时静刚度也有明显提高,改善了床身的动静态特性,节约了制造成本。该方法对其他类似关键零部件的动态优化设计具有一定的借鉴意义。  相似文献   

5.
The focus of this paper is on the design of machine tool structures, such as columns and spindle holders, for a 3-axis μ-CNC machining centre. Carbon/epoxy composite–aluminium hybrid structures with friction layers were used to increase structural damping. Two types of hybrid column structures were proposed. Finite element analyses were carried out to calculate both the static deflection of columns due to deadweight and also the first natural frequency of machine tool structures as a function of the stacking angle and thickness of the carbon/epoxy composites. To increase damping capacity, a friction layer was inserted between the aluminium-composite interface. For the design of the structures the stacking angle and the thickness ratio of the composites were considered as major design variables. And the most appropriate stacking sequence of the composite–aluminium hybrid structure employing a friction layer was determined using finite element analyses and vibration tests.  相似文献   

6.
In order to solve bending behavior difference of corrugated structure in L andWorientation, bending response for composite sandwich beams with foldcores of three different wall thicknesses were experimentally and numerically investigated. Effect of the cell walls thickness on the strength and failure behavior of the composite sandwich beams with L and W orientations was also examined. The deformation mode was obtained by the numerical method; a constitutive law of laminated material has been incorporated into a finite element (FE) analysis program. Numerical calculations give accurate prediction to the bending response of foldcore composite sandwich beams comparing with experiments. Structural flexural stiffness, strength and failure mechanism at a given topological geometry depended on the nature of core itself: the bending stiffness and strength of the sandwich beam increased with the core wall thickness (relative density). Also, bending isotropy was shown in this study for foldcore composite sandwich beams with selected core geometry.  相似文献   

7.
In the present study, effect of hybridization on the hybrid composite armors under ballistic impact is investigated using hydrocode simulations. The hybrid composite armor is constructed using various combinations and stacking sequences of fiber reinforced composites having woven form of fibers specifically high specific-modulus/high specific-strength Kevlar fiber (KF), tough, high strain-to-failure fiber Glass fiber (GF) and high strength/high stiffness Carbon fiber (CF). Different combinations of composite armors studied are KF layer in GF laminate, GF layer in KF laminate, KF layer in CF laminate and CF layer in KF laminate at various positions of hybridized layers for a fixed thickness of the target. In this article the results obtained from the finite element model are validated for the case of KF layer in a GF laminate with experimental predictions reported in the literature in terms of energy absorption and residual velocity and good agreement is observed. Further, the effect of stacking sequence, projectile geometry and target thickness on the ballistic limit velocity, energy absorbed by the target and the residual velocity are presented for different combinations of hybrid composite armors. The simulations show that, at a fixed thickness of the hybrid composite armor, stacking sequence of hybridized layer shows significant effect on the ballistic performance. The results also indicate energy absorption and ballistic limit velocity are sensitive to projectile geometry. Specifically, it is found that arranging the KF layer at the rear side, GF layer in the exterior and CF layer on the front side offers good ballistic impact resistance. The hybrid composite armor consisting of a CF layer in KF laminate acquires maximum impact resistance and is the best choice for the design compared to that of other combinations studied.  相似文献   

8.
Substituting composite structures for conventional metallic structures has many advantages because composite materials have both high specific stiffness and damping characteristics compared to conventional metallic materials. In this study, circular plate cutting tools which are used for rough machining of bearing sites in crankshafts or camshafts were designed with the fiber reinforced composite material to reduce tool mass and to improve the dynamic stiffness of circular plate cutting tools. The hybrid steel/composite circular plate cutting tool was analyzed by finite element method with respect to material types such as composite and foam, stacking angles of the composite, adhesive bonding thickness, and dimensions of the cutting tool. Also, the constrained damping characteristics of the tools were experimentally investigated with respect to the adhesive bonding thickness and material type such as composite and PVC foam. From the finite element analysis and experimental results, optimal design parameters for the hybrid steel/composite circular plate cutting tool were suggested.  相似文献   

9.
Composite heddle frame for high-speed looms   总被引:1,自引:0,他引:1  
A heddle (or heald) frame is the major part of a loom that produces woven cloth by insertion of weft yarns between warp yarns. Warp yarns are manipulated by many heddles fixed in a heddle frame. Recently, the up and down speed of heddle frames has been increased much for the increase of productivity, which induces higher inertial stresses and vibrations in the heddle frame. Conventional aluminum heddle frames have limits for the speed increase due to their low fatigue flexural strength as well as low bending stiffness. The estimated fatigue life of the aluminum heddle frame was 6 months at 600 rpm and infinite at 400 rpm, which was the same results reported by textile industries. Since carbon fiber epoxy composite materials have high specific fatigue strength (S/ρ), high specific modulus (E/ρ) and high damping capacity, in this paper a composite heddle frame was designed and manufactured. The optimum box type cross-sectional shape of the heddle frame and stacking sequence were determined by finite element analysis. The box type composite structure with several ribs was manufactured with prepregs by the autoclave vacuum bag process. Then the static and dynamic characteristics of the composite heddle frame and the aluminum heddle frame were measured and compared.  相似文献   

10.
Since the co-cured joint composed of composite and metallic structures has been widely used in joining process due to its simple and easy manufacturing process, the optimum design of the co-cured joint is important because the joint is usually the weakest part among the components of assembled structures.

In this work, the effect of design parameters for co-cured joint, such as fiber stacking sequence, stiffness ratio of composite to aluminum on the static tensile load capabilities and dynamic fatigue characteristics of the co-cured double lap joint composed of aluminum and carbon epoxy composite were experimentally investigated. Also, the stress distribution and energy release rate of the co-cured joint were calculated using finite element analysis with respect to design parameters.

From the experimental and finite element analysis results, the optimum values for each design parameters were obtained. Also, the optimum stiffness ratio for each stacking sequence of the carbon epoxy composite was obtained.  相似文献   


11.
The application of polymer composites as a substitution of metal is an effective approach to reduce vehicle weight. However, the final performance of composite structures is determined not only by the material types, structural designs and manufacturing process, but also by their mutual restrict. Hence, an integrated “material-structure-process-performance” method is proposed for the conceptual and detail design of composite components. The material selection is based on the principle of composite mechanics such as rule of mixture for laminate. The design of component geometry, dimension and stacking sequence is determined by parametric modeling and size optimization. The selection of process parameters are based on multi-physical field simulation. The stiffness and modal constraint conditions were obtained from the numerical analysis of metal benchmark under typical load conditions. The optimal design was found by multi-discipline optimization. Finally, the proposed method was validated by an application case of automotive hatchback using carbon fiber reinforced polymer. Compared with the metal benchmark, the weight of composite one reduces 38.8%, simultaneously, its torsion and bending stiffness increases 3.75% and 33.23%, respectively, and the first frequency also increases 44.78%.  相似文献   

12.
Fiber reinforced composite material and magnetic powder containing epoxy composite were employed for the materials of the spindle shaft and squirrel cage rotor, respectively to enhance the dynamic performance of high speed built-in type air spindle system because the bending natural frequency of spindle system increases when the specific bending stiffness (EI/ρ) of the shaft is high and rotor mass is reduced. Although polymer based composite rotors have low eddy current characteristics, the mechanical and magnetic properties of the composite rotor at elevated temperatures may be degraded due to the heat transfer from stator coils.

Therefore, in this paper, the mechanical and magnetic material properties of powder containing composites such as storage modulus (E), coefficient of thermal expansion (), thermal conductivity (k) and magnetization curves (B–H curves) were measured with respect to temperature and magnetic powder content. Then the thermal and magnetic analyses were performed with appropriate boundary and loading conditions, and the optimal design conditions of squirrel cage rotor were proposed.  相似文献   


13.
The objective of this investigation was to study how the mechanical properties of an optically transparent composite varied with the geometrical arrangement, stacking sequence, of polymethylmethacrylate (PMMA) (designated as P) and composite (designated as C) layers. The multi-layered composites (about 6.63 mm thick) were highly transparent between 22 to 46°C in the visible region. As expected, the sandwich structure, (CCPP)s had the highest Young's modulus while (PCCP)s and (PPCC)s composites had the highest flexural strength and work of fracture, respectively. The flexural strength of these laminated composites, which contained only 0.8 vol % fibre without any coupling agent, was up to 21% higher than that of pure PMMA.The stress distribution through the thickness at the midpoint of a sample loaded in three-point bending was computed by the finite element method (FEM). The computed stress distribution allowed the expected point of failure to be established. The relationship between the stacking sequence, stress level under a given load, and strength was also investigated. The observed fracture modes were complex and the maximum stress failure criterion did not fit these composites. The fracture was always complex (tensile and shear), starting with tensile failure followed by shear mode (delamination) and another tensile mode. The first crack always commenced at a PMMA layer adjoining the composite layer which contained the highest stress. The optimum stacking sequence when such composites are used as a window is concluded to be (PCCP)s, since this sequence had the highest flexural strength (141 MPa) and a moderate work of fracture (37 kJ m–2).  相似文献   

14.
We consider a static, single operation, non-pre-emptive, deterministic scheduling problem in which a set of n jobs is to be processed on k identical machines. Jobs assigned to each machine have a common due date. The number of machines (k) is unknown. Activating a machine will require additional costs to be incurred. The objective is to find an optimal sequence, the optimal number of machines (k), and the respective due dates to minimize the weighted sum of earliness, tardiness, and machine activation costs. We propose a polynomial time algorithm to solve the problem.  相似文献   

15.
利用电子万能试验机以及Split Hopkinson Compressive Bar(SHPB)测试了2DC/C复合材料在准静态、动态载荷下的压缩性能,结合光学显微镜分析了其在不同应变率下的破坏形貌、讨论了应变率对压缩破坏形貌的影响。结果表明:与准静态(10-4/s)相比,动态载荷下(5×102/s)复合材料的压缩强度提高了55%,压缩刚度提高了66%,具有较强的应变率效应;在准静态载荷下,C/C复合材料沿40°角剪切破坏,断口上炭纤维破坏具有溃散及剪切破坏特征,而在动态载荷下,C/C复合材料破坏成大小不一的碎片,其炭纤维破坏具有劈裂特征。C/C复合材料破坏模式的不同可归结为基体及界面强度的应变率效应。  相似文献   

16.
Mechanical design can be classified into stiffness design and strength design. In the stiffness design, the stiffness or deformation of members is concerned, and the enhancement of dynamic characteristics such as natural frequency or damping capacity of members or systems is also important. While, in the strength design, the primary concern is the enhancement of load carrying ability of members or systems.

Fiber reinforced composite materials offer a combination of strength and modulus that are either comparable to or better than many traditional metallic materials. Because of their low specific gravities, the strength-weight ratios, and modulus-weight ratios of these composite materials are much superior to those metallic materials. Composite materials can be tailored to meet the specific requirements of each particular design. Available design parameters are the choice of materials (fiber, matrix), the volume fraction of fiber and matrix, fabrication method, number of layers in a given direction, thickness of individual layers, type of layer (unidirectional or fabric), and the layer stacking sequence.

The greatest disadvantages of composite materials are the costs of the materials and the lack of well-defined design rules, therefore, composite materials should be applied in the right place with appropriate design rules. Up to now, the fiber reinforced composite structures are mainly employed in the strength design such as aircraft, spacecraft and vehicles.

In this paper, the novel application examples of composite structures to components for the robots, machine tools and automobiles are addressed considering the stiffness design issues of composite structures.  相似文献   


17.
碳/环氧树脂复合材料应变率效应的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
选择两种铺设方式( SS)的T300/Epoxy(炭纤维/环氧树脂)层合板, 利用MTS试验机以及Hopkinson拉伸杆分别对其进行了准静态拉伸试验(应变率为10-5~10-4 s-1)、 中应变率拉伸试验(应变率为100 ~101s-1)和高速冲击拉伸试验(应变率为102~104s-1)。静态、 动态实验的试件形状及尺寸均相同。获得了不同应变率加载条件下T300/Epoxy的应力-应变曲线。基于所获得的应力-应变曲线, 讨论了应变率对炭纤维增强复合材料力学性能的影响。研究结果表明: 复合材料T300/Epoxy是应变率相关的材料; 层合板的铺设方向对其应变率效应有着显著的影响; 随着应变率的增加, 材料的强度及弹性模量有较大程度的提高, 但破坏应变有所降低。通过对试验结果的数据拟合, 提出了材料应变率相关的动态本构模型。   相似文献   

18.
This study measured the modulus of elasticity (MOE) of various plastics and composite materials with a Taber stiffness tester as an alternative to conventional universal testing machines. The proposed approach presents an expedited means to assess MOE for a wide range of plastics and wood plastic composites (WPCs) with various shapes. The Taber stiffness units and the geometry of the samples acted as the basis for the calculation of the MOE. The results showed a high correlation between the MOE calculated from Taber units and that obtained on a universal testing machine (Instron). Concurrently, Taber units showed the potential to assess stiffness of samples with irregular shapes, such as in the case of extruded rods, which exhibit this characteristic.  相似文献   

19.
Flax fibres can be considered as a natural composite, made of concentric layers in which cellulose microfibrils are surrounded helicoidally in a polysaccharidic matrix. They are characterised by low density, high aspect ratio and good specific mechanical properties. These considerations make flax a potential contender for reinforcement in polymer matrix composites, as replacement for the widely used glass fibres. 1 × 1 rib knitted structures are manufactured on a V-bed manual knitting machine using flax yarn. Composites with two and four rib knitted preform layers were fabricated in a hot press. Tensile and compressive tests were carried out and the failure mechanism was analysed, structure of the broken end of the composite was observed by scanning electron microscope (SEM). It is observed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix.  相似文献   

20.
基于铺层设计特征,提出一种使用碳纤维复合材料对承载结构件进行结构优化设计的方法和流程.该方法综合考虑结构几何特征、材料铺层方式、铺层厚度及铺层角度在设计环节中的序列关系,通过几何设计空间构建、离散变量多目标优化、基于工艺可行性的最优决策等方法实现结构设计.以碳纤维增强复合材料悬架控制臂的轻量化设计为例:首先,以钢质控制臂结构为参考建立复合材料控制臂的几何设计空间;然后,以复合材料铺层便利性为原则对其进行结构设计,采用准各向同性铺层对控制臂的铺层厚度进行设计;进而,以提高控制臂刚度和1阶固有频率为目标,使用优化算法对铺层角度进行多目标优化设计;最后,以工艺可行性为约束对优化结果进行筛选并最终完成结构设计.结果表明,所设计复合材料结构具有更大的刚度和1阶固有频率,并且与钢质结构相比减重47.9%.所提出的方法能够较好地兼顾结构特征和复合材料设计要求之间的关系,为复合材料结构优化设计理论与方法的发展提供有益参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号