首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤尘参与的瓦斯爆炸事故具有很强的破坏性和伤害性,是煤矿的重大事故之一.用一端开口的半封闭管道爆炸实验装置,通过改变瓦斯与煤尘耦合爆炸浓度及点火条件,揭示受限空间瓦斯与煤尘耦合爆炸的规律.实验结果表明,封闭下的耦合体爆炸火焰传播速度较开口状态达到极值快,但极值点距点火位置较近,开口爆炸火焰传播距离是积聚耦合体长度的2倍左右;瓦斯参与的煤尘爆炸,爆炸相对强度随瓦斯浓度的增加而增加,传播距离更远;理论推导瓦斯与煤尘耦合爆炸超压传播距离与爆炸能量的平方根成正比,与巷道断面积的平方根成反比,研究结果为防治瓦斯爆炸、事故勘验以及阻隔爆装置的研制提供了可靠的实验数据.  相似文献   

2.
煤尘的粒径大小和质量浓度对煤尘的燃烧爆炸存在重要的影响.为研究分析大颗粒煤尘对瓦斯煤尘爆炸产生的影响,在煤尘质量浓度相同的基础上,从参与爆炸的主体煤尘中选取粒径为75μm的大颗粒,分别与粒径为15,25,35μm的小颗粒进行混合爆炸并同时改变大颗粒煤尘的质量百分比,通过有限元软件Fluent,应用连续相、颗粒相计算方法对爆炸过程进行数值模拟,对最大爆炸压力和火焰传播速度进行了分析.结果表明:在大小颗粒混合的复合爆炸中,最大爆炸压力一直处于一个范围之间;总质量一定,最大爆炸压力、火焰传播速度随着大颗粒煤尘质量百分比的增大而呈现下降趋势,并且混合煤尘中小颗粒粒径越小,最大爆炸压力、火焰传播速度越大.  相似文献   

3.
为揭示瓦斯爆炸与沉积煤尘耦合二次爆炸中瓦斯火焰的传播特性,利用瓦斯煤尘管道爆炸实验系统,测试爆炸火焰传播与冲击波诱导沉积煤尘扬起二次爆炸的关系。实验结果表明:瓦斯爆炸诱导煤尘二次爆炸的关键在于瓦斯爆炸火焰的传播速度和距离,爆炸冲击波先行激起沉积煤尘,而后与到达的爆炸火焰耦合形成二次爆炸;瓦斯浓度一定时,爆炸火焰传播距离取决于瓦斯聚集长度,一般为原聚集长度的3~5倍,化学当量瓦斯爆炸火焰传播速度最快;一定条件下,浓度不同而化学当量接近9.5%的瓦斯爆炸峰值压力大、火焰传播快,极易诱导煤尘参与二次爆炸。研究结论可为煤矿瓦斯爆炸诱导煤尘二次爆炸提供隔爆、抑爆的理论和技术支持。  相似文献   

4.
为了探讨不同粒径细水雾对管内瓦斯爆炸特性的影响机理,采用试验和数值模拟相结合的方法进行分析.结果表明,5μm粒径的细水雾对瓦斯爆炸具有很好的抑制作用,能够有效降低爆炸时的火焰温度、火焰传播速度和最大超压值,但45μm和160μm粒径的细水雾对管道内瓦斯爆炸却起到一定的促进作用.其原因是:小粒径细水雾在火焰锋面能够完全蒸...  相似文献   

5.
为研究水平管道内甲烷-煤尘混合爆炸对压力的影响,防控煤矿瓦斯爆炸的发生,利用自制的水平管道式气体-粉尘爆炸测试装置研究了不同甲烷-煤尘配比浓度、煤尘粒度下,爆炸压力的变化.结果表明:随着甲烷和煤尘配比浓度的增加,最大爆炸压力先增大后减小,当甲烷-煤尘配比浓度为5%甲烷、400 g/m3煤尘浓度时爆炸压力达到最大;各甲烷-煤尘配比浓度所对应的最大爆炸压力不同,最大爆炸压力的增幅与降幅有显著的差异,最大分别为42%和52%;煤尘粒径与爆炸压力之间呈线性减小关系,在43~125μm范围内,煤尘粒径越大,爆炸压力越小.  相似文献   

6.
为揭示瓦斯和瓦斯煤尘爆炸反射压力沿矿井巷道传播变化的规律,用管道爆炸实验系统模拟测试极弱爆炸和极强爆炸巷道超压与反射压力的定量变化关系.结果表明,瓦斯和瓦斯煤尘与空气混合爆炸,在弱爆炸条件下爆炸的反射压力均是峰值超压的1.8~2.0倍,強爆炸下瓦斯或瓦斯煤尘爆炸的反射压力大约是峰值超压的8~21倍.实验结果与理论计算基本吻合,表明巷道反射压力强度取决于冲击波在巷道空间内的反射过程,巷道内爆炸超压强度随爆炸传播距离的增加而降低,遇固壁则反射压力强度加大,加重了井下设备的破坏和人员伤害程度.  相似文献   

7.
利用自行研制的管道式气体粉尘爆炸试验装置,研究了管道内甲烷-空气混合物的爆炸过程,对爆炸过程进行了模拟仿真.研究得到的仿真模拟结果与实验数据的偏差12%,与文献数据基本吻合.试验研究表明:试验管道的长径比L/D较小时对管道内火焰的加速效应有限,不同时刻管道内压力波集中在火焰面前方一个很薄的区域内,随着火焰从左向右传播,最终在管道右端达到最大压力0.92 MPa;密闭空间内,气体爆炸最大压力值的大小与点火位置无关.  相似文献   

8.
为了探明点火能量大小对煤尘爆炸火焰传播规律的影响,以褐煤粉为研究对象,采用哈特曼管在不同点火能量大小下对质量浓度为500 g/m3的煤尘爆炸的火焰传播行为进行了实验研究.以高速摄影记录火焰传播过程,并通过数形结合的方法处理得到火焰前锋阵面传播距离和传播速度,以此来评估点火能量对火焰传播的影响.实验中煤尘爆炸火焰向管口和...  相似文献   

9.
应用自主编写的大涡模拟程序,结合高精度数值格式,对横截面积7.2m2、长400m的煤矿巷道内瓦斯爆炸进行了模拟研究.结果表明,随着远离点火端,爆炸超压先升高后逐渐衰减;爆炸波冲量随着距离变化先迅速降低,当压力波形成冲击波时,冲量出现瞬时升高,然后又逐渐衰减;瓦斯爆炸过程中,原来的瓦斯积聚区被爆炸波拉长,导致火焰区域远大于瓦斯积聚区,约为7.1倍;爆炸波超压和冲量超过了阈值以及火焰区域扩大是造成人员伤亡的主要原因,伤亡区域长度大于原瓦斯积聚区长度的22倍.数值模拟结果与实验结果相符,为煤矿瓦斯爆炸的治理提供了理论基础.  相似文献   

10.
矿井瓦斯爆炸后巷道空气温度分布规律   总被引:3,自引:0,他引:3  
结合气体爆炸动力学弱冲击波爆炸理论等知识,建立了爆炸后的超压、温度随距点火源距离变化的非线性计算公式,并把超压计算值和实验值进行了对比.结果表明:对于体积分数分别为5.0%,7.5%,9.5%的100 m3瓦斯爆炸后的巷道内大气温度变化范围分别是:582.5~309.7,709.2~315.2,825.0~320.0 K;对于体积分数分别为5.0%,7.5%,9.5%的200 m3瓦斯爆炸后的巷道内大气温度变化范围分别是:688.3~314.3,867.4~321.8,1 028.4~328.3 K.爆炸后的温度随着距离的增加先迅速递减后平缓降低到矿井正常空气温度,随着爆源的体积分数、体积的增加所产生的最高温度越高,温度变化范围越大.  相似文献   

11.
利用计算流体动力学软件FLUENT研究了受限空间内平行障碍物和交错障碍物对火焰形状的影响.模拟采用500mm×150mm二维矩形空间模型,计算了2个平行障碍物、2个交错障碍物、3个平行障碍物、3个交错障碍物等4种工况下的火焰发展过程.障碍物间距100 mm,阻塞率为0.5.选取k-epsilon Realizable湍流模型,P1辐射模型和涡耗散模型模拟瓦斯爆炸火焰传播.模拟结果表明:受到交错障碍物影响,10ms处已经出现明显的火焰湍流,且交错障碍物具有更大的预热区面积.火焰传播过程与实验相近,模拟结果可靠,为进一步利用数值模拟方法研究瓦斯爆炸相关内容提供了参考.  相似文献   

12.
为了研究荷电细水雾对瓦斯爆炸超压的影响规律和机理,采用小尺寸管道模拟瓦斯爆炸,研究不同荷电电压作用下的瓦斯爆炸超压和平均压升速率,以及不同雾通量作用下的瓦斯爆炸超压.结果表明:随着荷电电压的升高,瓦斯爆炸超压和平均压升速率受到明显的抑制;随着雾通量的增加,瓦斯爆炸超压明显降低.在实验条件下,和普通细水雾相比,当雾通量为4L、荷电电压为8kV时,瓦斯爆炸超压峰值降低10.798kPa,降幅达49.78%;平均压升速率峰值降低180.468kPa/s,降幅达49.90%.  相似文献   

13.
封闭空间瓦斯爆炸过程的反应动力学分析   总被引:1,自引:0,他引:1  
为了获取瓦斯爆炸过程中反应动力学参数,通过修改化学动力学计算软件CHEMKINIII中的SENKIN程序包,采用甲烷燃烧的化学动力学详细反应机理(包括16种组分、41个反应),建立了定容弹中瓦斯爆炸过程的计算模型.利用该模型对瓦斯爆炸过程中温度、压力及反应物浓度的变化趋势进行了模拟分析,同时通过对瓦斯爆炸详细反应机理的敏感性分析,找出了影响瓦斯爆炸以及爆炸后部分致灾性气体生成的关键反应步.结果表明:瓦斯爆炸后温度、压力将分别达到2800K,0.24MPa左右;促进瓦斯爆炸的关键反应步为CH3+O2=CH3O+O,CH4+HO2=CH3+H2O2;促进CO与CO2生成的关键反应步为CH3+O2=CH3O+O,CH4+O2=CH3+HO2,CH4+HO2=CH3+H2O2,CH3+HO2=CH3O+OH,H+O2=OH+O.  相似文献   

14.
管道壁面散热对瓦斯爆炸传播特性影响的研究   总被引:5,自引:1,他引:4  
在实验室对几何尺寸为80 mm×80 mm的爆炸钢质管道进行了研究,通过在内壁加贴绝热材料,采用高精度动态数据采集分析系统,测量爆炸过程中的火焰、爆炸波参数,研究了瓦斯爆炸过程中壁面散热对火焰传播速度、爆炸波超压峰值及爆炸波波速的影响.结果表明:壁面散热条件对瓦斯爆炸传播特性影响非常明显,内贴绝热材料管道的火焰传播速度和爆炸波超压值、波速均比光滑管道有大幅提高,并可诱导激波的产生,其原因是管道内贴绝热材料后,壁面散热大幅减小.减少的热量一部分通过导热、扩散向未燃气体传递,一部分通过膨胀做功使爆炸波强度增大,两者均使火焰传播速度、爆炸波强度增加.从爆炸能量特征及能量守恒的角度进行了理论分析,实验结论与理论分析相吻合.  相似文献   

15.
用计算机仿真和建模的方法对煤矿安全监测系统进行研究,设计建立煤矿安全监测模型,建立瓦斯的绝对涌出量、瓦斯浓度与风速的关系、煤尘浓度与风速的关系、空气中的瓦斯浓度与煤尘爆炸下限的关系等数学模型,得到瓦斯与煤尘影响的不安全度模型.采用C#语言实现安全检测模型,并通过数学模型计算有害气体浓度及危险系数,仿真系统设计各监测地点的数据信息实时记录、存档功能,同时配以瓦斯浓度动态折线图,方便管理者对煤矿安全参数实施有效监控.经过实验验证了模型的可靠性、稳定性和实时性.  相似文献   

16.
为了研究交错障碍物对瓦斯爆炸火焰形状、火焰速度及爆炸压力的影响,设计并搭建了150mm×150mm×500mm半封闭透明腔体的瓦斯爆炸实验台,采用化学当量比浓度的甲烷-空气预混气体,并与平行障碍物工况进行了比较.实验结果表明:与平行障碍物相比,交错障碍物明显增强了火焰形变,提高了火焰速度和爆炸压力,其中火焰速度和爆炸压力的提升率最高分别达到78.0%和198%.因此,在实际巷道中,应尽量避免障碍物的交错放置.  相似文献   

17.
瓦斯爆炸火焰和冲击波在并联巷网的传播特征   总被引:1,自引:0,他引:1  
为了研究瓦斯爆炸在并联巷网内的传播特征,利用并联管道系统模拟爆炸在实际巷道内的传播特征.结果表明:爆源点在掘进头时,并联管道两侧的火焰传播速度Sf和爆炸超压值△Pmax接近,火焰和冲击波叠加后,爆炸强度增加,△Pmax从0.38 MPa突跃到0.46 MPa.爆源点在工作面时,爆炸向邻近掘进头传播时测得的火焰速度和爆炸超压缓慢增大,而向较远的封闭端传播时△Pmax的值一直增大,而火焰传播分3个不同的区段;爆炸向邻近工作面传播时,在汇聚点附近测得的爆炸超压(0.44 MPa)明显高于两侧的超压值(0.39和0.38 MPa),但火焰传播速度会降低.煤矿瓦斯爆炸叠加地点附近是爆炸破坏较严重区域,故是设备和人员防护的重点区域.  相似文献   

18.
瓦斯爆炸过程中火焰传播规律的模拟研究   总被引:10,自引:1,他引:10  
在模拟实验和数值计算的基础上 ,研究了瓦斯爆炸过程中火焰传播规律及其加速机理 .研究结果表明 ,障碍物对瓦斯爆炸过程中火焰传播规律有重要影响 .障碍物的存在将使瓦斯爆炸过程中火焰的传播速度迅速提高 .瓦斯爆炸时 ,火焰阵面附近温度较高 ,阵面前附近区域温度梯度变化较大 ,阵面后区域的温度变化较小 .障碍物附近温度很快上升到最大值 ,然后由于化学反应结束及管道壁吸热 ,温度开始下降 .在火焰传播通道上设置的障碍物对气相火焰具有加速作用 ,加速作用的机理主要是由于障碍物诱导的湍流区对燃烧过程的正反馈造成的  相似文献   

19.
火焰速度与超压关系   总被引:8,自引:0,他引:8  
在的基础上,探讨了瓦斯爆炸过程中火焰速度与超压之间的关系,研究结果表明:在瓦斯爆炸过程中,冲击波阵面的强度与火焰速度有关,无障碍物时,火争速度小于100m/s,产生的冲击波较弱,冲击波阵面上超压较小;随着障碍物的增多,火焰加速显著,一旦火焰速度加速超过200m/s,冲击波阵面上的超压则显著提高,冲击波阵面强度增大,这种高速火焰的压力波所引起的爆炸波破坏效应与爆轰波产生的爆炸波破坏效庆相当,对于煤矿  相似文献   

20.
煤尘爆炸冲击波传播规律及造成的伤害分区研究   总被引:1,自引:0,他引:1  
为减少煤矿煤尘爆炸后冲击波对人的危害,为煤矿防爆、抑爆和安全评价以及事故应急救援等提供理论依据,研究了煤尘爆炸后冲击波的传播规律.基于粉尘爆炸理论,采用理论与实验研究方法,研究了爆炸空气冲击波超压在巷道内的传播规律及超压所造成的伤害规律.结果表明煤尘爆炸冲击波超压与传播距离、巷道断面面积的平方根成反比,理论与实验分析的结果基本吻合,在此基础上划分了冲击波超压所造成的不同伤害范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号