首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
剧烈塑性变形在生产超细晶材料方面已经显示了巨大的潜力.虽然大量的研究集中在晶粒细化上,等通道转角挤压和高压扭转等剧烈塑性变形过程正在越来越多地被应用于其他领域诸如粉末固结,利用变形引发相变制作新颖结构与成分,获得多相及多尺度材料以及固态回收技术.本文引用我们近十年来的研究成果以介绍剧烈塑性变形在晶粒细化之外的诸多应用.特别是利用剧烈塑性变形颗粒固结来制取大块铝、钛、铝/钛双相合金和铝基纳米复合材料,利用机械激活和强制合金化来获得包括面心立方在内的新型钛结构,利用剧烈塑性变形引发的相变来制备纳米晶beta钛合金,以及利用等通道转角挤压来固态回收钛合金切削料.最后,对存在的挑战和机会进行了探讨.  相似文献   

2.
剧烈塑性变形在生产超细晶材料方面已经显示了巨大的潜力。虽然大量的研究集中在晶粒细化上,等通道转角挤压和高压扭转等剧烈塑性变形过程正在越来越多地被应用于其他领域诸如粉末固结,利用变形引发相变制作新颖结构与成分,获得多相及多尺度材料以及固态回收技术。本文引用我们近十年来的研究成果以介绍剧烈塑性变形在晶粒细化之外的诸多应用。特别是利用剧烈塑性变形颗粒固结来制取大块铝、钛、铝/钛双相合金和铝基纳米复合材料,利用机械激活和强制合金化来获得包括面心立方在内的新型钛结构,利用剧烈塑性变形引发的相变来制备纳米晶beta钛合金,以及利用等通道转角挤压来固态回收钛合金切削料。最后,对存在的挑战和机会进行了探讨。  相似文献   

3.
综述了金属结构材料和功能材料基体相晶体结构、层错能、Hollomon参数lnZ对等通道转角挤压ECAP变形组织演变规律影响的研究进展,试样基体相的晶体结构对变形组织的演变起重要的影响作用。随着应变量的增大,密排六方结构金属先形成形变孪晶、再启动优先存在的但被阻塞的滑移系统;面心立方结构金属的位错滑移主导着组织演变与晶粒细化过程,先形成亚晶界,再增大组织取向差,最终形成大角度晶界。在高层错能材料中,随着Hollomon参数lnZ增大,位错运动受到抑制,驱使变形机制从位错滑移逐渐转变成形变孪晶;当Z参数减小时,在ECAP高层错能材料中会形成微尺度的剪切带。在低层错能材料中形成丰富的孪晶,极低层错能的材料形成宏观剪切带。而中等层错能材料的变形机制则取决于Z值的高低。分析了ECAP过程动态再结晶的影响因素,认为γm·ln2Z30不宜作为ECAP过程是否发生动态再结晶的判据,ECAP过程动态再结晶的影响因素还有待进一步研究,如弄清ECAP过程温升规律、分析淬火保存ECAP变形组织将有助于研究ECAP动态再结晶。  相似文献   

4.
利用光学显微镜(OM)和电子背散射衍射仪(EBSD)研究低c/a值密排六方多晶Be单轴拉伸/压缩不同屈服阶段的孪晶变形行为。结果表明:单轴拉伸/压缩应力状态下,多晶Be形变孪晶均为{101-2}101-1-型孪晶。单轴拉伸应力状态下,因{0001}基面解理和{10 1-0}柱面滑移的竞争,多晶Be孪晶变形十分困难,断裂后(δ=6. 15%)孪晶变形晶粒仅占晶粒总数的约5%。单轴压缩应力状态下多晶Be表现出良好的塑性(δ=36. 30%),但压缩形变过程中,因多晶Be的基面和柱面滑移难以使晶粒转向孪晶变形的有利位置,孪晶变形对塑性的贡献集中在压缩变形初期。压缩塑性应变5. 74%时孪晶变形晶粒约占晶粒总数的40%~50%,之后随着应变量的增加,孪晶变形晶粒数不再明显增加,多晶Be良好的压缩塑性主要是滑移变形的贡献。单轴拉伸/压缩应力状态下,多晶Be的孪晶变形不易导致微裂纹的萌生。  相似文献   

5.
 用实验方法研究了奥氏体不锈钢在等径角挤压冷变形(路径RC)过程中组织变化。实验结果表明:当剪切方向与孪晶带方向成一定角度时,在剪切力的作用下,孪晶逐渐由大块孪晶→由剪切带分割的孪晶(楼梯状)→小块状→奥氏体亚晶或马氏体晶粒;部分孪晶在剪切力作用下,剪切带可直接碎化成具有大角度位向差的细小晶粒(奥氏体亚晶+马氏体晶粒),可发生马氏体相变;当剪切方向与孪晶带方向相同时,孪晶带区域也可发生马氏体转变;3道次变形后,具有明显特征的孪晶已很少,此后继续进行剪切变形,孪晶碎化组织(含马氏体)和奥氏体剪切滑移带(含碎化晶粒)的变形以剪切滑移方式进行,当奥氏体的滑移遇到阻力时,可局部形成局部形变孪晶来协调变形;随变形道次的增加,马氏体转变也越多,在多次剪切以及道次中的交叉滑移作用下,马氏体板条逐渐被高密度位错墙分割而碎化成细小的晶粒;8道次变形后,可获得60~230 nm的等轴晶粒。  相似文献   

6.
粗晶Mg-3Gd-1Zn合金高温压缩变形过程中的动态再结晶   总被引:1,自引:0,他引:1  
研究了粗晶Mg-3Gd-1Zn合金在723 ~823 K,应变速率0.100 ~0.001s-1条件下单轴压缩变形过程中的动态再结晶行为.研究结果表明,其热压缩曲线为典型的动态再结晶型,峰值流变应力和稳态流变应力随温度的升高而减小,随应变速率的增大而增大;在该实验温度范围内其变形激活能约为140 kJ·mol-1;再结晶晶粒尺寸lnd与lnZ参数偏离线性关系,且变形温度对再结晶晶粒尺寸的影响比应变速率更大.利用金相和电子背散射技术(EBSD)对773 K,0.010 s-1条件下压缩不同变形量的Mg-3Gd-1Zn合金进行了组织表征,发现其动态再结晶大都发生在孪晶界及其与原始晶界的交叉处,主要为孪生诱发动态再结晶形核(TDRX)机制.再结晶形核初期形状不规则,晶界倾向于呈直角,随着应变量的增大,由于晶界的局部迁移,再结晶晶粒逐渐转变为稳定的等轴晶.  相似文献   

7.
刘晓燕  强萌  杨西荣  罗雷 《稀有金属》2023,(10):1352-1358
室温下对纯钛进行多道次等径弯曲通道变形(ECAP),分别采用光学显微镜(OM)、透射电镜(TEM)、电子背散射衍射仪(EBSD)、室温拉伸和显微硬度观察,测试纯钛变形过程组织演变和力学性能变化规律,探讨纯钛室温变形机制和孪生行为。结果表明,纯钛ECAP变形过程中出现■拉伸孪晶和■压缩孪晶,随着挤压道次的增大,孪晶数量先增大后减小。孪晶的出现有效改变晶格取向,激发进一步位错滑移,辅助塑性变形过程,使纯钛显微组织有效细化,经过4道次ECAP变形,平均晶粒尺寸由约63.79μm细化至约2.81μm。1道次变形后晶粒细化效果最显著,平均晶粒尺寸比变形前减小约94%;随着变形道次的增加,晶粒细化效果减弱,4道次变形后平均晶粒尺寸累积减小约95.6%。同时,大量位错、孪晶和亚晶的形成,使得位错、孪晶以及亚晶之间的相互作用加强,显著提高了纯钛的屈服强度和显微硬度,4道次变形后,屈服强度从215 MPa增加到600 MPa,增幅为179%;显微硬度从HV 129增加到HV 200。由于1道次变形后晶粒细化效果最显著,并且出现大量孪晶和位错,屈服强度与硬度的增幅也最大。  相似文献   

8.
等通道热挤压变形制备奥氏体不锈钢纳米级组织   总被引:2,自引:2,他引:0  
 通过采用700 ℃等通道挤压法(ECAP法)对00Cr19Ni10奥氏体不锈钢实施变形,制备出晶粒尺寸在200~300 nm的超细晶组织,由此可使其抗拉强度与屈服强度显著增加。同时探讨了ECAP细化机理,对试验钢在等通道挤压变形中的微观组织演变过程进行了分析,发现其组织演变与滑移、孪晶以及动态再结晶有关。  相似文献   

9.
等通道转角挤压(Equal Channel Angular Pressing,ECAP)工艺能够通过材料的剧烈塑性变形,获得块状超细晶材料.等通道转角挤压(ECAP)工艺通过改变应变量大小及其均匀性对晶粒细化有着显著的效果.通过DEFORM-3D软件模拟纯钛等通道转角挤压过程,研究了不同模具参数对试样变形的影响规律,给出了不同模具转角、模具外转角和模具内转角半径对ECAP试样变形区等效应变的影响,为获得纯钛试样变形分布提供了有效的规律.  相似文献   

10.
在室温下对退火Fe-24Mn-1Si-1.5Al-0.045CTWIP钢进行了不同程度的拉伸变形,采用JEM-2100透射电子显微镜对变形后的组织形貌进行表征和分析。研究结果表明:在变形初期,晶粒内存在着大量位错,它们相互缠结,呈胞状结构。在此阶段,位错滑移为主要变形机制。随着变形量的增加,形变孪晶在晶界等处形成,孪生机制被激活,孪生和滑移机制相互竞争。双孪生系统在大多数晶粒内先后被激活,孪生和滑移机制相互交割,起到动态细化晶粒的作用,使强度显著提高。在变形后期,试验钢的变形机制主要是TRIP效应,以及孪生与滑移的相互作用而诱发了去孪生机制,层状组织出现,孪晶特征减弱,从而导致样品的局部变形和失效。  相似文献   

11.
在高应变速率下,钛-钢复合板不同材料以不同的变形机制协调变形,结合界面起到至关重要的作用.本文分析研究了高应变速率下钛-钢复合板的界面组织特征和变形机制.结果表明:在钢侧,随着应变速率的提高,小角度(3°~10°)晶界含量增多,织构组分{112}〈241〉逐渐演变为织构{665}〈386〉和{111}〈110〉.在钛侧,随着应变速率的提高,出现了明显的形变孪晶组织,三种形变孪晶如{1121}〈1100〉拉伸孪晶、{1122}〈1123〉压缩孪晶和{1012}〈1011〉拉伸孪晶产生的难易程度不一样,变形机制由常规的"孪生变形为主"转变为"位错滑移与孪生变形共存"的复合变形模式.在结合界面处,随着应变速率的提高,需要适应由两侧产生的不同变形抗力,才能够实现连续变形而不致使材料发生破坏,其主要的协调机制依靠结合界面及附近晶粒的滑移实现变形.   相似文献   

12.
等通道热挤压00Cr19Ni10奥氏体不锈钢的晶粒细化机制   总被引:1,自引:1,他引:1  
Ф8mm00Cr19Ni10不锈钢(%:0.025C、18.75Cr、10.96Ni)经700℃、挤压速度9mm/s、8道次等通道挤压后获得150~350am超细晶组织。通过光学显微镜,扫描和透射电镜,X-射线衍射,分析了在等通道挤压变形过程钢的微观组织演变,提出晶粒细化的位错、孪晶和动态再结晶机制,研究发现在1~4道次以孪晶细化机制为主,5~8道次以动态再结晶细化机制为主。  相似文献   

13.
为揭示超细晶材料在高于室温条件下的动态疲劳变形行为,在室温到300℃温度范围内以及在恒应力幅为200 MPa条件下研究等通道转角挤压(ECAP)法制备的超细晶铜的循环形变行为及表面变形特征.结果表明:随着温度升高,循环软化更趋明显,相应的疲劳寿命显著降低,断口形貌特征由脆性逐步转变为韧性;表面变形特征及损伤行为也与温度密切相关,例如,作为主要变形方式的大尺度剪切带在室温疲劳下大量形成:随着温度升高,晶粒长大及位错滑移增强,晶界数量和体积分数明显降低,导致剪切带变得更细且不连续,当温度高于其再结晶温度时剪切带几乎消失,晶粒内的位错滑移成为材料的主要变形方式.  相似文献   

14.
室温下具有密排六方(hcp)晶体结构的钛,由于在晶体学上具有较低的对称性,只有4个独立滑移系,塑性变形能力差。工业纯钛的塑性变形机制主要为滑移和孪生,且孪生变形在塑性变形过程中起着重要的作用,显著地影响工业纯钛的显微组织及力学性能。等径弯曲通道变形(equal channel angular pressing, ECAP)是最具有工业应用前景的剧烈塑性变形技术之一,成功制备性能优异的超细晶(UFG)工业纯钛。本文综述了工业纯钛ECAP变形过程中的孪生行为及机制研究进展。重点从ECAP变形工艺:挤压温度、挤压道次、挤压速度、模具参数以及晶粒尺寸等方面详细论述了工业纯钛ECAP变形过程中的孪生行为,分析了工业纯钛ECAP变形过程中不同阶段的孪生机制,并指出工业纯钛ECAP变形过程中的孪生行为及机制研究中存在的问题及今后的研究方向。  相似文献   

15.
剧烈塑性变形(SPD)是制备超细晶材料的重要技术手段。基于国内外在钛及钛合金剧烈塑性变形领域所取得的成果,介绍了等通道转角挤压、搅拌摩擦加工、高压扭转、累积叠轧和多向锻造5种典型的剧烈塑性变形技术的基本原理和研究进展,探讨分析了剧烈塑性变形对钛及钛合金组织演变和力学性能的影响。指出了目前钛及钛合金剧烈塑性变形技术所存在的问题,并对今后的发展进行了展望。  相似文献   

16.
采用Gleeble高温压缩实验研究了变形条件对GH625合金高温变形动态再结晶的影响,结果表明:当变形程度较小时,原始晶粒内部出现大量孪晶,晶界呈现锯齿状凸出;随变形程度的增加,在晶界弓出部位开始形核,形成大量再结晶晶粒,随变形程度进一步增加,GH625合金动态再结晶体积分数增大,但是再结晶晶粒尺寸无明显变化;GH625合金动态再结晶是一个受变形温度和应变速率控制的过程,变形温度越高,动态再结晶越容易形核,应变速率越小,动态再结晶过程进行得越充分。在低应变速率条件下,GH625合金获得完全动态再结晶组织的温度随变形速率的升高而升高,而在高应变速率条件下必须考虑变形热效应对合金变形组织的影响。  相似文献   

17.
采用轴向拉应力、周向压应力的方式对工业纯钛进行室温加工,研究不同加工变形量下孪晶组织和力学性能的演化规律,并通过变形样品退火后的组织与硬度变化表征孪晶的稳定性。结果表明:孪晶数量和尺寸与加工变形量呈线性变化,60%变形量样品中出现加工流线并达到塑性极大值;550℃退火出现再结晶晶粒,形变孪晶550℃以下可短时亚稳存在。  相似文献   

18.
为了研究EW75镁合金在不同温度、高应变率下的动态力学性能及变形机制,采用分离式Hopkinson冲击压杆装置(SHPB)对挤压态EW75镁合金进行了动态压缩实验,并利用金相显微镜(OM)和透射电子显微镜(TEM)对冲击后的试样进行了显微分析。结果表明:挤压态EW75镁合金沿ED方向在室温(20~25℃), 200和300℃3个温度的动态压缩载荷下,随应变率的提高具有正应变率强化效应,室温下2826 s~(-1)时具有最大动态工程压缩强度为764 MPa,而在300℃3344 s~(-1)时获得最大动态压缩断裂应变为20%;随着应变率和温度的提高,挤压态EW75镁合金的组织中孪晶的数量增加,再结晶晶粒发生增殖和长大,并有异常长大的晶粒和白亮带的形成;挤压态EW75镁合金的动态压缩变形机制为滑移和孪生两种方式进行,并存在绝热剪切变形,随着温度升高,有动态回复和强烈的再结晶发生。  相似文献   

19.
Ti-6Al-4V钛合金表面纳米化机制研究   总被引:5,自引:1,他引:4  
借助X射线衍射仪、透射电镜及显微硬度仪等先进仪器,研究了经超音速微粒轰击( SFPB)形变热处理Ti-6Al-4V合金表面自身纳米化晶粒尺寸演化及纳米化机制.研究结果表明:超音速微粒轰击使Ti-6Al-4V合金表面获得了纳米组织,并发生显著的加工硬化,表面显微硬度比基体硬度提高了1倍多;随着SFPB处理时间的延长,纳米结构层厚度不断增加,晶粒尺寸逐步细化,当SFPB处理30 min后晶粒尺寸趋于稳定,在表层形成了晶粒尺寸约为20 nm具有随机取向的纳米等轴晶.Ti-6Al-4V合金表面自身纳米化是由于位错运动、孪晶的形成及交割共同作用的结果;在多方向载荷的重复作用下,在塑性变形区产生了大量的由位错线和高密度位错缠结分割的位错胞,并在位错寨集处产生应力集中,进而形成孪晶;孪晶自身相互交割和位错的滑移相互协调,形成了细小的孪晶和胞状组织;晶胞组织转变为细小多边形亚晶;当孪晶尺寸细化到亚纳米级时,位错的滑移起主导作用,最终通过位锗的湮灭和重组形成了具有随机取向的等轴状纳米晶粒.  相似文献   

20.
研究了30Mn20Al3无磁钢冷轧板经1000和800℃固溶处理10 min后的拉伸变形加工硬化行为和组织结构变化.结果表明:该钢的加工硬化速率在不同变形阶段随真应变的变化呈现不同的规律,加工硬化指数随真应变增加而增加.OM和TEM观察显示,变形量小时,滑移为主要变形机制;变形量增大,变形机制以形变孪晶与位错及形变孪晶之间的交互作用为主;1 000℃固溶处理的晶粒尺寸较800℃大,变形过程中产生的形变孪晶较多,且随着变形量增加,形变孪晶可持续形成,增大了TWIP效应;晶粒尺寸减小使变形过程中的形变孪晶产生的临界应力增大,抑制形变孪晶的产生,从而减小了TWIP效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号