首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了Si元素对Sn-0.7Cu钎料合金钎焊性能的影响。采用感应熔炼工艺制备出Sn-0.7Cu-x Si (x=0,0.1,0.3,0.5,0.75,1.0;%,质量分数)钎料合金,通过扫描电镜(SEM)、能谱仪(EDS)、显微硬度计及万能拉伸实验验机等分析测试方法研究了Sn-0.7Cu-x Si钎料微观组织、界面形貌、熔化特性及力学性能。研究结果表明:加入0.1%的Si元素后,晶粒明显细化,共晶相增多,界面层厚度降低,此时硬度及抗拉强度达到最大值(HV0.025 11.38,37 MPa);随着Si含量的继续增加,Sn-0.7Cu-x Si钎料合金晶粒逐渐粗化,共晶组织减少,同时过量黑色的Si颗粒聚集,界面处化合物层厚度不断增加;钎料的熔点随着Si含量的增加无明显变化,过冷度逐渐降低,当Si元素添加量超过0.5%后趋于稳定,相比于Sn-0.7Cu钎料合金降低了46.5%;Sn-0.7Cu-x Si钎料合金的润湿性随着Si含量的增加先升高后降低,在Si元素含量为0.5%处润湿面积最大(93.71 mm2),显微硬度及剪切强度逐渐降低。  相似文献   

2.
新型无铅焊料Sn-Ag-Cu-Cr-X的性能研究   总被引:6,自引:0,他引:6  
传统的SnPb钎料由于Pb的毒性即将被禁止在微电子连接上使用, 加上现在集成电路小型化、微型化以及高密度化的趋势;对所要开发的无铅钎料性能要求愈来愈高.以 Sn-3.0Ag-0.5Cu钎料为母合金, 添加了不同含量的合金元素Cr以及微量的合金元素Al或P, 得到了一种新的Sn-3.0Ag-0.5Cu-Cr-P, 测得熔点在217 ℃左右, 抗拉强度达46 Mpa, 电导率在8.2(106 S·m-1)以上, 并具有很好的抗氧化性能.  相似文献   

3.
机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究   总被引:4,自引:2,他引:2  
采用机械合金化工艺制备Cu-4%Cr和Cu-7%Cr(原子分数)二元合金粉末,利用XRD,SEM和TEM研究机械合金化过程中粉末的微观形貌和显微组织结构,测量了不同球磨时间粉末的氧含量以及显微硬度.结果表明:在一定的球磨时间内,Cu-Cr合金粉末随着高能球磨的进行,晶粒逐渐细化至纳米尺寸,晶格畸变增加,但进一步球磨会导致铜的晶格常数有所增加,畸变降低.实验证明,在固态下几乎不互溶的Cu-Cr合金,经球磨40 h的机械合金化,Cr在Cu中的固溶度明显提高.  相似文献   

4.
研究了少量合金元素Cr,Al对Sn-3.0Ag-0.5Cu(305)无铅钎料高温抗氧化性的影响。钎料在液态下的表面颜色变化以及热重分析表明,Cr,Al能明显改善305合金钎料的抗氧化性能。通过合金元素Cr,AI的抗氧化机制和X射线衍射分析得出:Al和Cr在钎料表面形成致密氧化膜,形成“阻挡层”,抑制了钎料的氧化。同时也比较了合金元素Cr,Al对305钎料润湿性能的影响,结果表明:单独加Al不利于钎料的铺展,少量的Cr和Al同时加入对钎料的铺展没有太大的影响。实验证实:Cr和Al的共同作用明显提高了Sn-3.0Ag-0.5Cu钎料的高温抗氧化性,同时对钎料的润湿性也没有恶化作用。  相似文献   

5.
用Zr,Al,Ni和Cu的元素粉末,采用机械合金化的方法在转速为400 r/min、球料质量比20:1的条件下制备具有非晶结构的Zr50Al15 Ni10Cu25粉末,研究其非晶化机制。用X射线衍和扫描电镜分析粉末的结构、晶粒尺寸和形貌。结果表明:在球磨8 h后可使Zr50Al15 Ni10Cu25混合粉末非晶化,晶粒尺寸约80 nm;球磨过程中并没有出现任何过饱和固溶体或者中间合金相,非晶化过程是由于球磨过程中球磨罐和磨球对粉末的不断冲击、剪切、摩擦和挤压,使混合粉末中的晶粒极度细化而直接转变为非晶态颗粒,得到非晶粉末。  相似文献   

6.
通过非自耗电弧熔炼与氩气保护浇铸,制备Ag-50Cu-4Ti基钎料合金。采用差热分析(DSC)、X射线衍射(XRD)、显微组织观察及力学性能测试方法,研究Zr含量对基体钎料合金显微组织与力学性能的影响。结果表明,Zr含量的增加并不明显影响钎料合金的熔化温度,其熔点均为783℃左右。随Zr含量的提高,基体合金的显微组织发生明显变化,Zr的添加可降低基体合金中针状Cu3Ti相的体积分数与尺寸,促进弥散分布的(Cu,Ag)5(Ti,Zr)相形成,从而提高合金的维氏硬度与剪切强度。高温氧化实验表明,含Zr合金表现出相对基体合金更为优异的高温抗氧化性能。  相似文献   

7.
本研究采用机械合金化方法制备氧化物(Al2O3)弥散强化镍基高温合金预合金粉末.通过改变球磨工艺参数,分析了球磨转速和球料比对机械合金化过程的影响,对球磨后的粉末进行SEM分析、XRD分析、粒度测试和松装密度测试,得出最佳的球磨工艺参数。实验结果表明:Al2O3 弥散强化镍基高温合金机械合金化粉末尺寸随球磨转速的增加先减小后增大,当球磨转速为400rmp,球料比为20∶1时,合金粉末有较高的松装密度和较小的粉末粒度。  相似文献   

8.
采用机械合金化和粉末压制、烧结的方法制备Mg-1.SZr合金,通过金相组织分析、力学性能测试和动态热机械技术研究球磨转速和球料质量比对该合金显微组织、力学性能和阻尼性能的影响.结果表明,当球磨转速从280 r/min增加到310 r/min时,合金的晶粒细小,合金的密度、显微硬度和抗弯强度均达到最大值,分别为1.743 g/cm3、46.73 HV和222.63 MPa,阻尼性能最好,耗能因子(tanφ)高达0.113.进一步提高球磨转速至350 r/min时,合金的组织粗化,显微硬度、抗弯强度、密度和阻尼性能均有所下降.增大球料质量比有利于细化晶粒,并提高Mg-1.5Zr阻尼合金的力学性能和密度.Mg-1.5Zr合金的阻尼峰温度随频率增大而升高,拟合结果表明驰豫时间满足Arrhenius关系,呈现弛豫型阻尼特征.  相似文献   

9.
采用机械合金化法制备了Fe基预合金粉(FeCuNiSnCo粉末),通过热压烧结制备胎体材料,对制备的Fe基预合金粉末及其胎体性能进行表征,利用正交实验研究了球料比、球磨转速、液固比、球磨时间等对粉末松装密度和胎体材料硬度、抗弯强度的影响,确定最优工艺,并对胎体材料显微组织进行观察。结果表明:在球磨过程中,粉末颗粒经过重组、变形、破碎和合金化,粉末形貌发生了改变,影响了粉末松装密度;球磨转速和球料比是影响胎体材料硬度和强度的主要因素;综合分析最佳工艺参数为:球磨时间6 h,球磨转速400 r·min-1,球料比4:1,液固比0.5:1.0。  相似文献   

10.
采用铝钛硼细化剂对Al-1.2Mg-0.8Si-0.4Cu合金进行晶粒细化,研究了晶粒细化对Al-1.2Mg-0.8Si-0.4Cu合金组织与性能的影响。结果表明:随着铝钛硼细化剂添加量的逐渐增加,Al-1.2Mg-0.8Si-0.4Cu合金的晶粒逐渐细化,合金的抗拉强度和伸长率逐渐提高。当铝钛硼细化剂添加量增加至0.5%时,Al-1.2Mg-0.8Si-0.4Cu合金被细化为37μm的等轴晶,合金的抗拉强度为243MPa,伸长率为10.5%,与未添加铝钛硼细化剂相比,此时合金的抗拉强度提高了43%,伸长率提高了90.9%。  相似文献   

11.
通过Ce的添加以及熔体结构转变两个方面探究其对Sn-3.8Ag-0.7Cu的影响。运用直流四电极法测量Sn-3.8Ag-0.7Cu-XCe(X=0%,0.2%,0.5%,1%)合金在液相线以上电阻率随温度的变化,得出无铅焊料Sn-3.8Ag-0.7CuXCe合金存在温度诱导的熔体结构转变,并且这种转变是可逆的。随着Ce添加量的增加,合金的熔点升高。凝固实验结果显示,熔体结构转变以及稀土元素Ce的添加均可以细化合金微观组织,且当Ce的添加量为0.2%时,微观结构最细小均匀。  相似文献   

12.
分别采用直接机械合金化法及氧化物共还原法制备了W-10Cu和W-20Cu复合材料,研究了钨粉粒度、烧结温度和保温时间对钨铜合金显微组织、致密度和电导率的影响。结果表明:随着W粉粒度的增加,直接机械合金化法制备的钨铜合金组织中W晶粒逐渐增大,致密度逐渐降低,电导率逐渐增大。在相同烧结条件下,氧化物共还原法较直接机械合金化法制备的钨铜合金组织中W晶粒尺寸细小,分布均匀,致密度和电导率更高。随着烧结温度的升高,钨铜合金组织中W晶粒尺寸逐渐增大,致密度和电导率逐渐增加。当烧结温度由1 500 ℃增加至1 600 ℃时,氧化物共还原法制备的W-10Cu合金中W平均晶粒尺寸由2.1 μm增加至3.6 μm,致密度由98.2%增加至98.5%,电导率由39.3%IACS增加至39.8%IACS;W-20Cu合金中W平均晶粒尺寸由2.3 μm增加至3.5 μm,致密度由98.4%增加至99.2%,电导率由40.8%IACS增加至41.6%IACS。此外,钨铜合金组织中W晶粒尺寸随着保温时间的增加而逐渐增大。  相似文献   

13.
将W80Cu20(n(W):n(Cu)=4:1)混合粉末在QM-BP式行星式高能球磨机中球磨进行机械合金化,研究了不同球磨时间对W-Cu混合粉末组织的影响.采用XRD和SEM对不同球磨时间的粉末进行分析,结果显示随着球磨时间的增加,混合粉末产生合金化效果不断增强,Cu固溶于W中,并且晶粒尺寸得到一定的细化.  相似文献   

14.
采用机械合金化制备了纳米晶Cu-5%(质量分数,下同)Cr粉末,然后对其进行了热压制坯和热静液挤压致密化研究。结果表明,经10h高能球磨,Cu-5%Cr粉末中Cu的晶粒尺寸细化到约50nm,成为纳米晶粉末。采用热压制坯和热静液挤压工艺可以使纳米晶Cu-5%Cr粉末接近完全致密化。球磨10h的Cu-5%Cr合金粉末经400℃热压制坯和600℃、挤压比为4的热静液挤压后相对密度达到99.3%。热静液挤压致密化后的Cu-5%Cr合金的晶粒有所长大,Cu基体的平均晶粒尺寸达到了500nm左右,变成了亚微米晶材料。该亚微米晶Cu-5%Cr合金具有较好的性能。  相似文献   

15.
采用机械合金化法制备W-20%Cu(质量分数)纳米晶复合粉体.通过XRD,SEM等方法对球磨后的复合粉体进行表征,研究球磨时间对复合粉体的物相成分、晶粒尺寸、微观应变以及表面形貌的影响,并探讨机械合金化过程中过饱和固溶体的形成机制.结果表明:随着球磨时间的延长,W的晶粒尺寸及晶格常数不断减小,微观应变逐渐增大;球磨40...  相似文献   

16.
试验研究了超细WC-纳米Al_2O_3弥散强化Cu基复合材料粉末的机械球磨制备工艺。采用XRD、SEM、EDS等表征手段,研究了机械球磨过程WC/Al_2O_3/Cu粉末形貌、强化相WC与Al_2O_3分布形态、Cu基体晶粒尺寸的变化规律。通过室温压制试验,研究了所制备粉末的压制特性。结果表明:在球磨转速300 r/min、球料比10:1(质量比)的条件下,经过100 min球磨,可获得WC、Al_2O_3颗粒均匀分布的Cu基复合材料粉末,Cu基体晶粒尺寸细化到约0.4μm。机械球磨WC/Al_2O_3/Cu复合材料粉末具有较好的压制成形性,其压制特性可用黄培云双对数压制方程描述。  相似文献   

17.
Sn3.0Ag0.5Cu无铅钎料已广泛应用于电子封装中,但是与传统的Sn Pb钎料相比,其抗冲击能力相对较差,且成本远远高于锡铅钎料。因此,为了改善抗冲击性能,降低钎料的成本,低银型无铅钎料成为研究热点。本文对比分析了Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu两种无铅钎料的润湿性及力学性能,同时研究了焊后和高温时效300 h后两种钎料焊点的显微组织。结果表明:随着Ag含量的增加,钎料的铺展面积显著增加,不同钎焊温度条件下,钎料的铺展面积随着钎焊温度的升高而明显增大。Sn3.0Ag0.5Cu钎料焊点的拉伸力和剪切力也明显高于Sn1.0Ag0.5Cu钎料,但随着时效时间的增加,高银型钎料的力学性能下降速度略高于低银型钎料。焊后两种钎料对应界面层为Cu6Sn5,经150℃时效300 h,界面金属间化合物的厚度随着时效时间的增加而增加。同时,界面层随着Ag含量的增加而增厚。  相似文献   

18.
以机械破碎Al-7Si-0.3Mg合金粉末为原料进行高能球磨, 对不同球磨时间的合金粉末进行金相观察、X射线衍射分析、透射电镜表征及显微硬度测试, 研究球磨时间对纳米晶Al-7Si-0.3Mg合金粉末的影响。结果发现, 高能球磨导致共晶硅颗粒从微米尺度细化到亚微米尺度, 颗粒形状从多面体转变成圆形, 颗粒内部有层错生成。随着球磨时间逐渐增加到60 h, 合金粉末平均颗粒尺寸从134μm逐渐下降到22μm, Al(Si, Mg)基体晶粒尺寸从438 nm降低到23 nm, 粉末显微硬度从HV 93增加到HV 289。粉末硬度的增加主要归功于球磨导致的晶粒细化(细晶强化作用), 此外, 球磨过程中硅颗粒的细化以及球磨引起的Mg、Si原子在基体内固溶度的增加也有利于粉末硬度的提高。  相似文献   

19.
Au-19.25Ag-12.80Ge钎料的焊接性能研究   总被引:1,自引:1,他引:1  
根据Au-Ag-Ge三元相图, 制备了新型Au-19.25Ag-12.80Ge(%, 质量分数)钎料合金.利用DTA, Sirion200场发射扫描电镜对钎料的熔化特性及显微组织进行分析, 并对其与纯Ni的润湿性加以研究.结果表明: Au-19.25Ag-12.80Ge钎料合金的熔化温度为446.76~494.40 ℃, 结晶温度区间为47.64 ℃; 焊接温度在510~550 ℃范围内时, Au-19.25Ag-12.80Ge钎料合金与Ni基体具有良好的铺展性和润湿性, 在熔化钎料前沿有润湿环现象出现, 钎料合金与Ni基体之间形成了一条连续的金属间化合物层, 能谱分析表明该金属间化合物层为Ge3Ni5金属间化合物, 由于该化合物层较脆, 故应控制焊接工艺以获得连续均匀且厚度适当的金属间化合物层; 对于本钎料合金而言, 焊接温度530 ℃, 保温时间10 min可获得较理想的焊接界面.  相似文献   

20.
采用高能球磨法制备Al2O3/Cu复合粉末,通过X射线衍射仪(XRD)和扫描电镜(SEM)研究高能球磨时间对复合粉末的物相、晶粒尺寸和表面形貌的影响。结果表明,随球磨时间的增加,基体Cu的晶粒不断被细化,在球磨初期,晶粒尺寸减小很快,当晶粒尺寸小于20 nm时,细化速率变缓而趋于稳定;Cu颗粒形貌由树枝状变为层状,并向椭球体转变;纳米Al2O3颗粒逐渐嵌入Cu颗粒体内,且分散均匀,从而获得纳米Al2O3颗粒弥散分布的Cu基复合粉末。并探讨了高能球磨对放电等离子体烧结Al2O3/Cu复合材料导电性能和力学性能的影响,研究认为高能球磨可以促进基体的晶界强化和弥散强化,而晶界的增加并不会导致电阻率的显著增大,影响电阻率的主要因素为Al2O3的体积分数、孔隙和杂质的固溶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号