首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
子空间辨识算法作为一种优良的多变量系统辨识算法,最近在国内发展很快.但是现在国内介绍的大多数子空间辨识算法在变量有误差(errors-in-variable)时和闭环辨识时辨识结果却是有偏的,这是因为大多数子空间辨识算法都假设输入变量是没有噪声及辨识算法中存在的一个投影过程.文中介绍了一种新的子空间辨识算法,这种算法利用主元分析(PCA)来获取系统矩阵,避免了其他算法中的投影过程,因此该算法在闭环辨识和变量有误差(errors-in-variable)的情况下,辨识结果也是无偏的.最后给出一个仿真例子说明这种辨识算法的辨识效果良好.  相似文献   

2.
曹扬  罗予频  杨士元 《计算机学报》2007,30(12):2151-2155
GPCA(Generalized Principal Component Analysis)是近几年提出的一种数据聚类和降维方法,它通过将样本聚类为不同的子空间得到样本的低维表达.GPCA方法已经被应用于图像分割、图像聚类等问题.原有的GPCA算法具有指数计算复杂度,很难应用于高维数据的实际处理.文中针对此问题,提出了基于子空间搜索的SGPCA算法,将聚类问题分解为单个平面的单个垂直向量的搜索问题,对不同子空间分别搜索,从而实现多项式复杂度算法.实验表明,新方法不仅计算复杂度低,而且对噪声的鲁棒性也更强.  相似文献   

3.
综述人脸识别中的子空间方法   总被引:76,自引:3,他引:76  
如何描述每个个体人脸的特征,使之区别于其他个体,是人脸识别研究中的关键问题之一.近年来提出了大量的方法,其中随着主元分析在人脸识别中的成功应用之后,子空间分析因其具有描述性强、计算代价小、易实现及可分性好的特点,受到了广泛的关注.文中结合近年来已发表的文献,按照线性和非线性的划分,对子空间分析在人脸识别中的应用作一回顾、比较和总结,以供其他人参考.  相似文献   

4.
空间光滑且完整的子空间学习算法   总被引:1,自引:0,他引:1  
提出一种空间光滑且完整的子空间学习算法.它融合了主成分分析、空间光滑的子空间学习算法和局部敏感判别投影的技术特点.不但保持了数据流形的全局和局部几何结构,而且保持了它的判别信息和空间关系.从原始样本提取全局和局部特征经线性变换组成新样本,再从新样本中提取最佳分类特征,最后由分类器完成分类识别.同一般的子空间算法相比,该算法提高了识别率.实验结果验证了该算法的有效性.  相似文献   

5.
在线故障诊断是工业过程中十分重要的问题.相比传统贡献图而言,基于重构的故障诊断受到特别关注.传统的主元分析方法没有考虑故障数据中同时包含正常工况信息和故障信息,因而提取出故障子空间对故障的描述准确性不足.为提高故障子空间的准确性,提出一种基于广义主成分分析的重构故障子空间建模方法.首先,同时考虑正常工况数据和故障数据,...  相似文献   

6.
针对关节式目标变化对子空间描述造成的影响,本文提出了一种基于增量学习的关节式目标跟踪算法.该算法通过引入图像分割方法与快速傅里叶变换可有效消除背景像素对目标描述造成的影响以及目标区域前景目标位置对不准造成的误差,同时应用局部二值模式增加目标描述中像素点间的几何位置信息,应用基于增量学习的方法实现目标特征的在线更新,最终为跟踪算法提供较为精确的目标描述.实验结果表明,本文提出的关节式目标跟踪算法具有较好的目标跟踪效果.  相似文献   

7.
郭莹  刘纪元  康智  艾名舜 《计算机应用》2010,30(5):1428-1430
在实际中接收天线与辐射源之间通常存在相对运动,此时传统的高分辨算法性能将严重下降,针对上述问题提出一种自适应信号波达方向即DOA估计算法。新算法以快速稳定的信号子空间跟踪算法为基础,结合ESPRIT算法实现DOA估计,不需要特征值分解,计算复杂度小。仿真实验显示新算法比基于幂迭代的动目标DOA估计算法具有更好的估计性能。  相似文献   

8.
改进的子空间语音增强算法   总被引:1,自引:0,他引:1  
单通道子空间语音增强算法在加性噪声为白噪声的情况下,效果比较理想.加性噪声为有色噪声的情况下,通常用广义奇异值分解算法来进行处理.为了降低低信噪比情况下残留的音乐噪声,结合人耳的听觉掩蔽效应,提出了一种基于感官抑制的广义奇异值分解算法.实验结果显示,该算法能够明显地提高语音质量、可懂度和识别率,特别是在加性噪声是有色噪声的情况下实验结果明显优于其他的语音增强算法.  相似文献   

9.
该文研究分布参数系统的奇异最优控制的收敛性和渐近分析,给出了一种可行的渐近展开算法和误差估计,并提出一个Stiff类型的未解决问题.  相似文献   

10.
针对压缩感知理论的稀疏分析模型下的子空间追踪算法信号重构概率不高、重构性能不佳的缺点,研究了此模型下的稀疏补子空间追踪信号重构算法;通过选用随机紧支框架作为分析字典,设计了目标优化函数,改进优化了稀疏补取值方法,改进了算法迭代过程,实现了改进的稀疏补分析子空间追踪新算法(IASP).实验结果证明,所提算法的信号完全重构概率明显高于分析子空间跟踪(ASP)等5种算法的信号完全重构概率;对于含高斯噪声的信号,所提算法重构信号的整体平均峰值信噪比明显超过ASP等3种算法整体平均峰值信噪比(PSNR),但略低于贪婪分析追踪(GAP)等2种算法的整体平均峰值信噪比.所提算法可用于语音和图像信号处理等领域.  相似文献   

11.
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method.   相似文献   

12.
主成分分析是信号处理和数据统计领域内非常重要的分析工具.针对现有多个主成分提取算法收敛速度慢的问题,提出了具有快速收敛速度的神经网络算法.该算法能够并行提取信号中的多个主成分,而不需要其他额外的操作.分别采用平稳点分析法和随机离散时间分析法对所提算法的收敛性和自稳定性进行了证明.仿真实验表明,相比现有算法,所提算法不仅具有较快的收敛速度,而且具有较高的收敛精度.  相似文献   

13.
赵东波  李辉 《计算机应用研究》2011,28(10):3907-3909
雷达目标识别中,核主分量分析(KPCA)算法是一种重要的特征提取算法,但雷达目标高分辨率距离像(HRRP)具有平移敏感性,使得该方法应用于基于雷达目标识别系统中具有其缺陷性。采用零相位表示法得到平移不变的HRRP,利用KPCA进行特征维数压缩,利用BP神经网络分类算法来实现识别。仿真实验结果表明,该方法实现了平移不变和降维的结合,具有较高的识别率和很好的推广性。  相似文献   

14.
The subspace method of pattern recognition is a classification technique in which pattern classes are specified in terms of linear subspaces spanned by their respective class-based basis vectors. To overcome the limitations of the linear methods, kernel-based nonlinear subspace (KNS) methods have been recently proposed in the literature. In KNS, the kernel principal component analysis (kPCA) has been employed to get principal components, not in an input space, but in a high-dimensional space, where the components of the space are nonlinearly related to the input variables. The length of projections onto the basis vectors in the kPCA are computed using a kernel matrix K, whose dimension is equivalent to the number of sample data points. Clearly this is problematic, especially, for large data sets.In this paper, we suggest a computationally superior mechanism to solve the problem. Rather than define the matrix K with the whole data set and compute the principal components, we propose that the data be reduced into a smaller representative subset using a prototype reduction scheme (PRS). Since a PRS has the capability of extracting vectors that satisfactorily represent the global distribution structure, we demonstrate that data points which are ineffective in the classification can be eliminated to obtain a reduced kernel matrix, K, without degrading the performance. Our experimental results demonstrate that the proposed mechanism dramatically reduces the computation time without sacrificing the classification accuracy for samples involving real-life data sets as well as artificial data sets. The results especially demonstrate the computational advantage for large data sets, such as those involved in data mining and text categorization applications.  相似文献   

15.
This paper presents a novel tracking algorithm which integrates two complementary trackers. Firstly, an improved Bayesian tracker(B-tracker) with adaptive learning rate is presented. The classification score of B-tracker reflects tracking reliability, and a low score usually results from large appearance change. Therefore, if the score is low, we decrease the learning rate to update the classifier fast so that B-tracker can adapt to the variation and vice versa. In this way, B-tracker is more suitable than its traditional version to solve appearance change problem. Secondly, we present an improved incremental subspace learning method tracker(Stracker). We propose to calculate projected coordinates using maximum posterior probability, which results in a more accurate reconstruction error than traditional subspace learning tracker. Instead of updating at every time, we present a stopstrategy to deal with occlusion problem. Finally, we present an integrated framework(BAST), in which the pair of trackers run in parallel and return two candidate target states separately. For each candidate state, we define a tracking reliability metrics to measure whether the candidate state is reliable or not, and the reliable candidate state will be chosen as the target state at the end of each frame. Experimental results on challenging sequences show that the proposed approach is very robust and effective in comparison to the state-of-the-art trackers.  相似文献   

16.
为克服BP算法易陷入局部最小的缺点,同时为减少样本数据维数,提出一种基于主成分分析(PCA)的遗传神经网络方法。通过降维和去相关加快收敛速度,采用改进的遗传算法优化神经网络权值,利用自适应学习速率动量梯度下降算法对神经网络进行训练。MATLAB仿真实验结果表明,该方法在准确性和收敛性方面都优于BP算法,应用于入侵检测系统中的检测率和误报率明显优于传统方法。  相似文献   

17.
18.
针对步态识别中的平均步态能量图像系数矩阵维数过高和分类较困难的特 点,提出一种基于模糊理论决策分类的双向二维主成分分析的步态识别算法。通过预处理技 术得到平均步态能量图并将得到的图像分割为多个子图像,利用双向二维主成分分析来降低 平均步态能量子图像的系数矩阵维数,加快识别速度。引入模糊理论决策的方法进行最近邻 分类器的分类。最后在CASIA 步态数据库上对所提出的算法进行实验,实验结果表明该算 法具有较好的识别性能并有较强的鲁棒性。  相似文献   

19.
This paper presents a hybrid approach to conducting performance measurements for Internet banking by using data envelopment analysis (DEA) and principal components analysis (PCA). For each bank, DEA is applied to compute an aggregated efficiency score based on outputs, such as web metrics and revenue; and inputs, such as equipment, operation cost and employees. The 45 combinations of DEA efficiencies of the studied banks are calculated, and used as a ranking mechanism. PCA is used to apply relative efficiencies among the banks, and to classify them into different groups in terms of operational orientations, i.e., Internet banking and cost efficiency focused orientations. Identification of operational fitness and business orientation of each firm, in this way, will yield insights into understanding the weaknesses and strengths of banks, which are considering moving into Internet banking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号