共查询到19条相似文献,搜索用时 93 毫秒
1.
子空间辨识算法作为一种优良的多变量系统辨识算法,最近在国内发展很快.但是现在国内介绍的大多数子空间辨识算法在变量有误差(errors-in-variable)时和闭环辨识时辨识结果却是有偏的,这是因为大多数子空间辨识算法都假设输入变量是没有噪声及辨识算法中存在的一个投影过程.文中介绍了一种新的子空间辨识算法,这种算法利用主元分析(PCA)来获取系统矩阵,避免了其他算法中的投影过程,因此该算法在闭环辨识和变量有误差(errors-in-variable)的情况下,辨识结果也是无偏的.最后给出一个仿真例子说明这种辨识算法的辨识效果良好. 相似文献
2.
GPCA(Generalized Principal Component Analysis)是近几年提出的一种数据聚类和降维方法,它通过将样本聚类为不同的子空间得到样本的低维表达.GPCA方法已经被应用于图像分割、图像聚类等问题.原有的GPCA算法具有指数计算复杂度,很难应用于高维数据的实际处理.文中针对此问题,提出了基于子空间搜索的SGPCA算法,将聚类问题分解为单个平面的单个垂直向量的搜索问题,对不同子空间分别搜索,从而实现多项式复杂度算法.实验表明,新方法不仅计算复杂度低,而且对噪声的鲁棒性也更强. 相似文献
3.
4.
空间光滑且完整的子空间学习算法 总被引:1,自引:0,他引:1
提出一种空间光滑且完整的子空间学习算法.它融合了主成分分析、空间光滑的子空间学习算法和局部敏感判别投影的技术特点.不但保持了数据流形的全局和局部几何结构,而且保持了它的判别信息和空间关系.从原始样本提取全局和局部特征经线性变换组成新样本,再从新样本中提取最佳分类特征,最后由分类器完成分类识别.同一般的子空间算法相比,该算法提高了识别率.实验结果验证了该算法的有效性. 相似文献
5.
6.
针对关节式目标变化对子空间描述造成的影响,本文提出了一种基于增量学习的关节式目标跟踪算法.该算法通过引入图像分割方法与快速傅里叶变换可有效消除背景像素对目标描述造成的影响以及目标区域前景目标位置对不准造成的误差,同时应用局部二值模式增加目标描述中像素点间的几何位置信息,应用基于增量学习的方法实现目标特征的在线更新,最终为跟踪算法提供较为精确的目标描述.实验结果表明,本文提出的关节式目标跟踪算法具有较好的目标跟踪效果. 相似文献
7.
8.
9.
该文研究分布参数系统的奇异最优控制的收敛性和渐近分析,给出了一种可行的渐近展开算法和误差估计,并提出一个Stiff类型的未解决问题. 相似文献
10.
针对压缩感知理论的稀疏分析模型下的子空间追踪算法信号重构概率不高、重构性能不佳的缺点,研究了此模型下的稀疏补子空间追踪信号重构算法;通过选用随机紧支框架作为分析字典,设计了目标优化函数,改进优化了稀疏补取值方法,改进了算法迭代过程,实现了改进的稀疏补分析子空间追踪新算法(IASP).实验结果证明,所提算法的信号完全重构概率明显高于分析子空间跟踪(ASP)等5种算法的信号完全重构概率;对于含高斯噪声的信号,所提算法重构信号的整体平均峰值信噪比明显超过ASP等3种算法整体平均峰值信噪比(PSNR),但略低于贪婪分析追踪(GAP)等2种算法的整体平均峰值信噪比.所提算法可用于语音和图像信号处理等领域. 相似文献
11.
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 下载免费PDF全文
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. 相似文献
12.
13.
雷达目标识别中,核主分量分析(KPCA)算法是一种重要的特征提取算法,但雷达目标高分辨率距离像(HRRP)具有平移敏感性,使得该方法应用于基于雷达目标识别系统中具有其缺陷性。采用零相位表示法得到平移不变的HRRP,利用KPCA进行特征维数压缩,利用BP神经网络分类算法来实现识别。仿真实验结果表明,该方法实现了平移不变和降维的结合,具有较高的识别率和很好的推广性。 相似文献
14.
The subspace method of pattern recognition is a classification technique in which pattern classes are specified in terms of linear subspaces spanned by their respective class-based basis vectors. To overcome the limitations of the linear methods, kernel-based nonlinear subspace (KNS) methods have been recently proposed in the literature. In KNS, the kernel principal component analysis (kPCA) has been employed to get principal components, not in an input space, but in a high-dimensional space, where the components of the space are nonlinearly related to the input variables. The length of projections onto the basis vectors in the kPCA are computed using a kernel matrix K, whose dimension is equivalent to the number of sample data points. Clearly this is problematic, especially, for large data sets.In this paper, we suggest a computationally superior mechanism to solve the problem. Rather than define the matrix K with the whole data set and compute the principal components, we propose that the data be reduced into a smaller representative subset using a prototype reduction scheme (PRS). Since a PRS has the capability of extracting vectors that satisfactorily represent the global distribution structure, we demonstrate that data points which are ineffective in the classification can be eliminated to obtain a reduced kernel matrix, K, without degrading the performance. Our experimental results demonstrate that the proposed mechanism dramatically reduces the computation time without sacrificing the classification accuracy for samples involving real-life data sets as well as artificial data sets. The results especially demonstrate the computational advantage for large data sets, such as those involved in data mining and text categorization applications. 相似文献
15.
This paper presents a novel tracking algorithm which integrates two complementary trackers. Firstly, an improved Bayesian tracker(B-tracker) with adaptive learning rate is presented. The classification score of B-tracker reflects tracking reliability, and a low score usually results from large appearance change. Therefore, if the score is low, we decrease the learning rate to update the classifier fast so that B-tracker can adapt to the variation and vice versa. In this way, B-tracker is more suitable than its traditional version to solve appearance change problem. Secondly, we present an improved incremental subspace learning method tracker(Stracker). We propose to calculate projected coordinates using maximum posterior probability, which results in a more accurate reconstruction error than traditional subspace learning tracker. Instead of updating at every time, we present a stopstrategy to deal with occlusion problem. Finally, we present an integrated framework(BAST), in which the pair of trackers run in parallel and return two candidate target states separately. For each candidate state, we define a tracking reliability metrics to measure whether the candidate state is reliable or not, and the reliable candidate state will be chosen as the target state at the end of each frame. Experimental results on challenging sequences show that the proposed approach is very robust and effective in comparison to the state-of-the-art trackers. 相似文献
16.
17.
18.
19.
Online banking performance evaluation using data envelopment analysis and principal component analysis 总被引:1,自引:0,他引:1
This paper presents a hybrid approach to conducting performance measurements for Internet banking by using data envelopment analysis (DEA) and principal components analysis (PCA). For each bank, DEA is applied to compute an aggregated efficiency score based on outputs, such as web metrics and revenue; and inputs, such as equipment, operation cost and employees. The 45 combinations of DEA efficiencies of the studied banks are calculated, and used as a ranking mechanism. PCA is used to apply relative efficiencies among the banks, and to classify them into different groups in terms of operational orientations, i.e., Internet banking and cost efficiency focused orientations. Identification of operational fitness and business orientation of each firm, in this way, will yield insights into understanding the weaknesses and strengths of banks, which are considering moving into Internet banking. 相似文献