首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Effects of microwave drying on the mechanical and optical properties of handsheets made from kraft and chemi-thermomechanical pulps were studied experimentally. The quality of paper dried in a microwave field of 2450 MHz is compared with that of paper dried by conventional method under standard conditions. All properties were found to be either enhanced or at the same level as those obtained under standard conditions. Since microwave field allows volumetric heating of moisture, the drying time is much shorter due to reduced resistance to heat and mass transfer within the paper. Furthermore, it is suggested that microwave drying could replace the conventional drying method in the standard testing of pulp and paper samples for quality control purposes.  相似文献   

2.
In this article, the quality changes of the granular fruits and vegetables dried by vacuum microwave drying, freeze drying, hot air drying, and combined hot air–vacuum microwave drying are investigated, and the quality parameters compared on the basis of vitamin C and chlorophyll contents, shrinkage and rehydration capacity, color, texture, and microstructure changes. The quality parameters of products dried by vacuum microwave drying are slightly lower than those obtained by freeze drying, but much better than those obtained using conventional hot air drying. The quality characteristics of product dried by combined hot air–vacuum microwave are significantly improved compared to those simply hot air–dried.  相似文献   

3.
In this article, the quality changes of the granular fruits and vegetables dried by vacuum microwave drying, freeze drying, hot air drying, and combined hot air-vacuum microwave drying are investigated, and the quality parameters compared on the basis of vitamin C and chlorophyll contents, shrinkage and rehydration capacity, color, texture, and microstructure changes. The quality parameters of products dried by vacuum microwave drying are slightly lower than those obtained by freeze drying, but much better than those obtained using conventional hot air drying. The quality characteristics of product dried by combined hot air-vacuum microwave are significantly improved compared to those simply hot air-dried.  相似文献   

4.
A bench scale microwave–vacuum (MWV) dryer was developed using a modified consumer-grade microwave oven. MWV dehydration was first tested as a standalone method on whole frozen–thawed berries. Subsequently, a new combination drying technique was developed employing microwave osmotic dehydration under continuous-flow medium-spray (MWODS) conditions together with MWV as a secondary drying operation. Fresh (frozen–thawed) and MWODS pretreated berries were dried under a range of MWV treatments employing continuous and decreasing microwave power settings (duty cycles). Initial microwave power density for all treatments was approximately 10.2 W/g and magnetron power-on and power-off times varied from 3 to 15 s and 27 to 15 s, respectively. Drying times to 20% (db) were recorded and energy consumption was calculated according to the total magnetron power-on time where overall it was found that drying times and energy consumption decreased with increasing MWV process intensity, where drying times for all MWV treatments were significantly shorter than those of conventional air drying. Drying kinetics were fit using two models (exponential and Page's empirical model), where Page's model better fit the experimental data. The quality of the berries was monitored visually through evidence of scorching in order to screen treatments and establish upper limits of treatment intensity for further studies.  相似文献   

5.
玉米收获后需干燥至安全水分后储藏,干燥方式及合理的工艺过程对干燥品质有很大的影响,玉米干燥后的爆腰率是其品质的重要指标。利用自制的微波干燥试验测试系统对玉米进行干燥试验,得出了玉米微波干燥的特征曲线及干燥温度特性,探讨了三个主要工艺参数单位功率、干燥最高温度、平均失水率对爆腰率的影响。实验结果表明,玉米微波干燥中按失水率的变化可以分为预热、恒速、降速三个阶段,预热段较长,水分主要在恒速段排出;温度经历了上升和趋于稳定的过程;爆腰率随各参数的增大而升高。得到的初步结论是:玉米微波干燥最好在单位干燥功率0.3W/g以下、干燥最高温度不超过70℃、平均失水率不大于0.2%/min的条件下进行。  相似文献   

6.
微波真空干燥技术是在真空条件下利用微波能对物料进行干燥加工的一项新技术,本实验以猕猴桃切片为研究对象,以干制品复水率、维生素C含量以及干燥时间为指标,在单因素试验的基础上,通过3因素3水平的二次回归正交试验,研究了微波功率、物料厚度、干燥室压力对猕猴桃切片干燥特性的影响。结果表明:在微波功率为800W、切片厚度为4mm、干燥室压力为0.04MPa的条件下,微波真空干燥猕猴桃切片的干制品质量最好,确定了猕猴桃切片微波真空干燥较优工艺参数条件。  相似文献   

7.
The aim of the present study was to evaluate and compare different drying methods (microwave, hot air?+?microwave, and osmotic dehydration?+?microwave) in raspberries (cv. Heritage). A portion of raspberries was pretreated with osmotic dehydration (60°Brix sucrose solution at 20°C for 360?min) and another with hot air drying (HAD) (1.5?m/s air speed at 60°C for 300?min). Pretreated raspberries were then dried by microwave and at three different intensities (3.5, 7.5, and 11?W/g). Physicochemical properties (moisture content, water activity, and drying rate) and quality parameters (optical properties, mechanical properties, antioxidant capacity, and rehydration capacity) of dried raspberries were evaluated. Results showed that the microwave drying (MWD) at 7.5?W/g (50?min and final temperature of 79?±?5.1°C) allowed a high yield of dried raspberries. The combined processes were not efficient to accelerate the decrease of moisture content, due to the low drying rate of the pretreatments. In terms of quality, none of the drying processes allowed a high retention of the antioxidant capacity. However, they allowed an appropriate rehydration performance. The combination of HAD with MWD allowed obtaining a good appearance and desirable texture on the dried product. Thus, this last option seems to be the best among the drying methods tested, but additional studies are required to improve the efficiency of the process and the effect on the antioxidant capacity during drying.  相似文献   

8.
Microwave-assisted pulse-spouted vacuum drying (MPSVD) of apple cubes was examined in a laboratory-scale apparatus. Aside from the drying time, structural and textural properties of the dried cube were measured. Results are compared with alternative drying techniques developed earlier in our laboratory. These include microwave-spouted bed drying (MSBD), microwave vacuum drying (MVD), and conventional vacuum drying (VD). Comparison is made in terms of the key quality parameters, viz. color, texture, apparent density, rehydration property, and sensory evaluation. Over the range of operating conditions tested, MPSVD apple cubes had the best color and significantly highest sensory evaluation score.  相似文献   

9.
The drying of carrot slices in a microwave-assisted fluidized-bed drying (MWFBD) system was investigated. The drying conditions such as the initial microwave power density and the inlet air temperature were optimized. The effects of different pretreatment processes such as water blanching, osmotic drying with 20% sugar solution, and 1% citric acid solution on the drying of carrot slices were investigated under the optimized drying conditions. The drying kinetics and the physical properties of the dried carrot slices were analyzed. Different mathematical models of the drying process were explored and fitted to the drying of carrot slices in MWFBD. The pretreatment of the carrot slices reduced the drying time required and improved the qualities such as color and textural strength of the dried carrot slices.  相似文献   

10.
Abstract

The aim of this work is to model the drying kinetics of mushrooms under several operational conditions, to evaluate the effective diffusivity coefficient of moisture removing by a drying model and inverse calculus method in finite differences and to study the effect on the final quality of dehydrated mushrooms. Different ways of microwave vacuum drying were compared to freeze-drying. Results show that a decrement of the applied pressure produces a certain increase in the drying rate together with a lower moisture in the dehydrated product at the end. Temperature control inside the sample helps to ensure a better quality in the dehydrated product, than when controlled at the surface. Diffusivity coefficients show a correspondence with product temperature during drying. The microwave dried samples obtained with moderate power and temperature control of product shown an important degree of quality similar to that obtained by freeze-drying.  相似文献   

11.
Abstract

Modern physical field technologies mainly include microwave, radio frequency, infrared radiation, ultrasound, pulsed electric field, and so on. Nowadays, the application of physical field technology on conventional drying is one of the recent strategies to solve some problems in traditional drying. In this article, physical field-based drying techniques refer to hybrid drying methods consisting of the conventional heating combined with different physical field technologies, in which physical field technologies provide various heat sources differ from conventional ones. A review is presented of recent five-year literature in the development of selected physical field-based drying technologies (microwave, radio frequency, infrared radiation, and ultrasound) for fruits and vegetables. As shown by examples from the literature, these physical field-based drying techniques provide faster drying kinetics and better thermal efficiency and obtain dried products of improved quality (e.g. color, aroma, texture, and nutrition retention) relative to conventional hot air drying. The combination of these techniques and conventional hot air drying showed enhanced cost-effectiveness as well. Furthermore, recommendations are made for further research and development needs and opportunities in this area.  相似文献   

12.
Abstract

This study investigated the quality and drying kinetics of instant parboiled rice fortified with turmeric (IPRFT) by using hot air (HA) and microwave-assisted hot air (MWHA) drying. The cooked long grain parboiled rice (LGPR) fortified with turmeric was dried with HA at temperatures of 65, 80, 95, and 110?°C. The microwave power density of 0.588 Wg?1 was incorporated for drying with MWHA. Drying was performed until the dried IPRFT reached 16% (d.b.) of moisture content. The quality of the dried IPRFT was evaluated in terms of color, total phenolics content (TPC), total antioxidant capacity (TAC), rehydration ratio, volume expansion ratio, texture and microstructure. The results showed that the incorporation of microwave power with HA drying helped to reduce the drying time by 50% compared to conventional HA drying. A prediction of the moisture ratio by using the Page model provided the best R2 and RMSE in drying kinetics. The drying conditions had small effects on the color, TPC, TAC, and microstructure of the dried IPFRT. The rehydration ratio, volume expansion ratio and texture of the rehydrated IPFRT showed minimal variations from changes in the drying conditions. The TPC and TAC of the dried IPRFT clearly increased compared to the TPC and TAC of the initial LGPR.  相似文献   

13.
Dehydration of Garlic Slices by Combined Microwave-Vacuum and Air Drying   总被引:10,自引:0,他引:10  
Combination of microwave-vacuum drying and air drying was investigated as a potential mean for drying garlic slices. The sample was dried by microwave-vacuum until the moisture content reached 10% (wet basis), and then by conventional hot-air drying at the temperature of 45°C to final moisture content less than 5% (wet basis). Pungency, color, texture, and rehydration ratio of garlic slices dried by this method were evaluated and compared with those dried by freeze drying and conventional hot-air drying. The comparison showed that the quality of garlic slices dried by the current method was close to that of freeze dried garlic slices and much better than that of conventional hot-air dried ones. The lab microwave-vacuum dryer which the materials to be dried could be rotated in the cavity was developed by the authors.  相似文献   

14.
Instant vegetable soup mix was dehydrated in a microwave freeze dryer to study the drying characteristics and sensory properties of the dried product. The mix was dried at different microwave power levels, material thicknesses, and material loads. As expected, microwave power significantly influenced the total drying time and sensory quality of the final product. The total drying time increased with the increase of material thickness and load. A material layer that is too thin causes the product quality to deteriorate.  相似文献   

15.
The vacuum freeze-drying (FD) technique used in the food industry can yield a high-quality product, but it is very expensive and requires a long processing time. Besides, the quantity of microorganisms in FD products can often exceed the required standard. As a result, it will be important to develop a new freeze-drying technique. In this article, cabbage was used as a model material, and the microwave field was used as a heat source to supply sublimation heat so that the drying time was shortened greatly. The effect of the microwave sterilization during the drying process was evaluated. Effects of the pressure, thickness of material being dried, and the input microwave power on such indices as drying time and the microorganism number were studied. Compared with the method of ordinary freeze drying, microwave freeze drying (MFD) can greatly reduce the drying time and has a notable sterilization effect.  相似文献   

16.
The vacuum freeze-drying (FD) technique used in the food industry can yield a high-quality product, but it is very expensive and requires a long processing time. Besides, the quantity of microorganisms in FD products can often exceed the required standard. As a result, it will be important to develop a new freeze-drying technique. In this article, cabbage was used as a model material, and the microwave field was used as a heat source to supply sublimation heat so that the drying time was shortened greatly. The effect of the microwave sterilization during the drying process was evaluated. Effects of the pressure, thickness of material being dried, and the input microwave power on such indices as drying time and the microorganism number were studied. Compared with the method of ordinary freeze drying, microwave freeze drying (MFD) can greatly reduce the drying time and has a notable sterilization effect.  相似文献   

17.
Combination of microwave-vacuum drying and conventional vacuum drying was investigated as a potential method for drying concentrated Ganoderma lucidum extraction. The Ganoderma lucidum was extracted by hot water (60-65°C) and then concentrated to moisture of about 70% (wet basis) in a rising-film evaporator. The concentrated sample was dried by microwave-vacuum until the moisture content reached 10% (wet basis), and then by conventional vacuum drying at the temperature of 55-60°C to final moisture content about 6% (wet basis). The retention of polysaccharide and triterpenes of Ganoderma lucidum dried by this method were evaluated and compared with those dried by freeze drying and conventional vacuum drying alone. The comparison showed that the quality of extraction dried by the current method was close to that of freeze-dried extraction and much better than that of conventional vacuum-dried ones.  相似文献   

18.
《Drying Technology》2013,31(7):1173-1184
Abstract

Combination of microwave-vacuum drying and air drying was investigated as a potential mean for drying garlic slices. The sample was dried by microwave-vacuum until the moisture content reached 10% (wet basis), and then by conventional hot-air drying at the temperature of 45°C to final moisture content less than 5% (wet basis). Pungency, color, texture, and rehydration ratio of garlic slices dried by this method were evaluated and compared with those dried by freeze drying and conventional hot-air drying. The comparison showed that the quality of garlic slices dried by the current method was close to that of freeze dried garlic slices and much better than that of conventional hot-air dried ones. The lab microwave-vacuum dryer which the materials to be dried could be rotated in the cavity was developed by the authors.  相似文献   

19.
The impact of microwave drying on the quality of dried wood remains unclear. Particular attention should be paid in order to optimize the combined microwave and convective drying process. In this study, a comprehensive internal heat and mass transfer model was developed and numerically implemented in order to simulate and understand the physical phenomena occurring inside Jack pine wood during a combined microwave and convective drying process. The model was validated on the basis of the average moisture content curves for drying scenarios at various microwave power levels. According to the simulations results, an increase in microwave power significantly decreases the drying time of Jack pine wood and increases its internal gas pressure, which increases the risk of cracking. However, compared to purely conventional convective drying, combined microwave and convective drying at medium microwave power and air temperature significantly reduces the drying time and maintains the internal gas pressure at reasonable values. At these conditions, the risk of cracking will be diminished. This last result was checked via experimental measurements of the sample strength dried at different microwave power levels. From this study, we can consider that for Jack pine wood, combined microwave and convective drying is a more efficient technology compared to classical convective drying.  相似文献   

20.
Combination of microwave-vacuum drying and conventional vacuum drying was investigated as a potential method for drying concentrated Ganoderma lucidum extraction. The Ganoderma lucidum was extracted by hot water (60–65°C) and then concentrated to moisture of about 70% (wet basis) in a rising-film evaporator. The concentrated sample was dried by microwave-vacuum until the moisture content reached 10% (wet basis), and then by conventional vacuum drying at the temperature of 55–60°C to final moisture content about 6% (wet basis). The retention of polysaccharide and triterpenes of Ganoderma lucidum dried by this method were evaluated and compared with those dried by freeze drying and conventional vacuum drying alone. The comparison showed that the quality of extraction dried by the current method was close to that of freeze-dried extraction and much better than that of conventional vacuum-dried ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号