首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
The effects of operational conditions on the drying performance in closed superheated steam drying were examined theoretically and experimentally. The vapor generated from the sample was circulated in the drying chamber. In the theoretical analysis, the replacement of air with vapor in drying chamber and the convective vapor transfer in sample were considered. At the start of drying, the drying chamber was filled with air. As the drying proceeded, the air was replaced with the vapor generated from sample. The calculated results explained the characteristics of experimental data. The pore diameter of sample had little effect on the drying characteristics. During the internal evaporation period, the evaporation occurred in the narrow zone, which moved from the surface to the bottom of sample. The convective vapor transfer in sample had a significant influence on the drying performance. The excess increments in temperature and velocity of drying gas hardly contributed to shortening the drying time.  相似文献   

2.
《Drying Technology》2013,31(7):1287-1303
The effects of operational conditions on the drying performance in closed superheated steam drying were examined theoretically and experimentally. The vapor generated from the sample was circulated in the drying chamber. In the theoretical analysis, the replacement of air with vapor in drying chamber and the convective vapor transfer in sample were considered. At the start of drying, the drying chamber was filled with air. As the drying proceeded, the air was replaced with the vapor generated from sample. The calculated results explained the characteristics of experimental data. The pore diameter of sample had little effect on the drying characteristics. During the internal evaporation period, the evaporation occurred in the narrow zone, which moved from the surface to the bottom of sample. The convective vapor transfer in sample had a significant influence on the drying performance. The excess increments in temperature and velocity of drying gas hardly contributed to shortening the drying time.  相似文献   

3.
4.
It is inferred from experimental data that in drying foodstuffs with superheated steam, the initial drying rate has a direct effect on the rate at which the overall drying takes place. That is, the faster the initial drying rate, the shorter the overall drying time. This criterion is very convenient because at the beginning, water moistens the sample external surface so evaporation does not depend on internal sample characteristics, but only on external convective heat and mass transfer rates. Mass and energy balance equations are solved and the result converted into a general initial drying rate equation, in which all dryer characteristics are grouped into one dimensionless parameter. The initial drying rate equation is mathematically maximized and the optimum working conditions determined. The result shows that initial drying rate always increase with increases of either the superheated steam temperature or velocity, but once these two variables are fixed, there exists at least one “optimum” pressure at which the initial drying rate is a maximum. Finally, the initial drying rate and optimum condition equations are applied to three model dryers, a dryer for a flat sheet, a fixed bed dryer and a rotary dryer. In each case, numeric values are computed and plotted as drying rate versus pressure curves, in which the optimum drying rate is also included. Also presented is a chart to compare the optimum pressures as functions of temperature and steam velocity for the three dryers.  相似文献   

5.
ABSTRACT

A new deodorization process using superheated steam drying has-been applied to removing unwanted soy sauce cake odors (press-filter residue of soy sauce) and has been successfully operated in a commercial plant since 1980. The main body of the dryer is a cylindrical vessel having a steam jacket outside and a high speed agitator inside. The cake was heated and dried not only by superheated steam direct-heat but also by saturated steam indirect-heat. Various measures were taken to prevent the spontaneous fire due to the oxidation of the oil contained in the cake. Likewise, this plant has been used to roast rice bran which also has a rich content of oil. The treated bran can be changed to an edible cereal and be stored at room temperature without any deterioration for more than six months.  相似文献   

6.
7.
ABSTRACT

The work considers the application of the flash drying to the moisture removal of fishmeal using superheated steam as transport medium. Heat, momentum and mass transfer equations were applied and an algorithm based on these equations was developed and solved. The model was validated using experimental data obtained in a pilot pneumatic dryer ( total length 60 m) provided with a steam jacket to maintain the superheated steam at a constant temperature. The drying time was less than 10 s to decrease the fish meals moisture content from 53.5% to 28% d.b. and in a second pass by the dryer the moisture down to 16.9% using superheated steam at It 1 ° C and 130 ° C in the jacket. The computational results are in agreement with the experimental data.  相似文献   

8.
The work considers the application of the flash drying to the moisture removal of fishmeal using superheated steam as transport medium. Heat, momentum and mass transfer equations were applied and an algorithm based on these equations was developed and solved. The model was validated using experimental data obtained in a pilot pneumatic dryer ( total length 60 m) provided with a steam jacket to maintain the superheated steam at a constant temperature. The drying time was less than 10 s to decrease the fish meals moisture content from 53.5% to 28% d.b. and in a second pass by the dryer the moisture down to 16.9% using superheated steam at It 1 ° C and 130 ° C in the jacket. The computational results are in agreement with the experimental data.  相似文献   

9.
《Drying Technology》2013,31(8):2047-2061
The utilization of superheated steam for pneumatic drying of solid particles makes it possible to operate with high particle concentration without the problem of phase saturation which tends to occur when hot air is utilized for drying. Normally, the operation of pneumatic dryers is analyzed through variations of unidirectional flows. For highly diluted transport conditions this is a correct assumption, but when the solid concentration is too high, the fluid dynamics is highly modified and the gas and solid velocities are distorted by solid–solid and Solid–Wall -interactions. These conditions affect the temperature distribution along the axial and the radial coordinates, which makes a bi-dimensional model analysis very important. Mathematical models have been developed for the bi-dimensional fluid dynamics of pneumatic transport. The present work applies one of these models to describe the axial and radial variation of velocities in a gas and particulate phase flow.  相似文献   

10.
S. Pang  M. Dakin 《Drying Technology》2013,31(6):1135-1147
Abstract

Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

11.
Drying of sintered spheres of coarse glass beads with a wide sintering range in superheated steam under vacuum was studied.

In samples with sintered angles of 7.5° –27°, the experimental normalized drying rates in superheated steam at pressures of 7.3-7.9mmHg were smaller than those for 56.0-767.6 mmHg in the vicinity of the critical moisture cotents for 56.0-767.6GmmHg. As reported in an earlier paper, there were  相似文献   

12.
ABSTRACT

A transient one dimensional first principles model is developed for the drying of a porous material (wood is used as an example) that includes both heat and mass transfer. Heat transfer by conduction and convection, mass transfer by binary gas diffusion, pressure-driven bulk flow in the gas and liquid, and diffusion of bound water are included in the analysis. The diffusive mass transfer terms are modeled using a Fickian approach, while the bulk flow is modeled assuming Darcian flow. Depending on the state (pendular or funicular) of the moisture in the wood, appropriate terms are considered in the development of the governing mass equations. The results provide distributions within the material of each moisture phase (vapor, liquid, and bound), temperature, and total pressure. Information regarding the drying rate and evaporation rate is also presented. Average distributions are obtained as a function of time, and compared with experimental data from the literature. It is observed that the total pressure within the material can be considerably above one atmosphere during the drying process.  相似文献   

13.
14.
Abstract

Process of through-air-drying is becoming increasingly popular in the manufacture of textiles, non-wovens, tissue, and towel. Very high drying rates, enhanced product properties, i.e., softness, bulk, absorbency, unique 3D structure are the driving forces behind its increasing popularity. In this article, experimental results on convective heat and mass transfer and fluid flow characteristics of tissue and towel products using commercially realistic structures are presented. Comparison with literature data using wet pressed, dried, rewetted sheets indicate significant differences in drying and permeability characteristics confirming that the internal structure of the material does indeed play a significant role in through-air-drying and should be taken into account in modeling, optimization, and control of commercial systems.  相似文献   

15.
Abstract

This work investigates the effect of spray drying conditions on some properties of tomato powder prepared by spray drying of tomato pulp. A pilot scale spray dryer (Buchi, B-191) with cocurrent regime and a two-fluid nozzle atomizer was employed. Sixty-four different experiments were conducted keeping constant the feed rate, the feed temperature, and the atomizer pressure, and varying the compressed air flow rate, the flow rate of drying air, and the air inlet temperature. Tomato powders were analyzed for moisture, solubility, density (bulk and packed), and hygroscopicity. Analysis of experimental data yielded correlations between powder properties and the above-mentioned variable operating conditions. Regression analysis was used to fit a full second order polynomial, reduced second order polynomials and linear models to the data of each of the properties evaluated. F values for all reduced and linear models with an R 2 ≥ 0.70 were calculated to determine if the models could be used in place of full second order polynomials.  相似文献   

16.
M. Vanek 《Drying Technology》2013,31(5):1207-1217
ABSTRACT

Since the only measured value that is derived from the wood for controlling the kiln drying process is the mean moisture content, it is essential to develop new techniques for the measurement of additional process parameters. When the drying rate, which could be such an additional parameter, is seen in conjunction with other process variables, conclusions on the instantaneous drying behaviour of the wood are possible. A simple and practical way for determining the drying rate is based on the relationship between the drying rate and the heat-flux for evaporation. A measurement of the heat-flux by means of a heat-flux sensor allows the calculation of the drying rate.  相似文献   

17.
18.
In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

19.
ABSTRACT

In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

20.
干燥过程热质传递的简化模型   总被引:3,自引:0,他引:3       下载免费PDF全文
王朝晖  涂颉 《化工学报》1995,46(5):579-585
对多孔介质体积平均理论进行简化,得到简化的热质传递干燥模型,用一个理论式表达模型中有效扩散系数。对香蕉片千燥的研究表明,模型的预测值与实验结果相  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号