首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis is an ideal host for the production of extracellular heterologous proteins. The use of a strong, constitutive promoter is a good means of optimizing the expression of heterologous proteins. In this study, high level extracellular production of subtilisin YaB, a potent meat tenderizer, was achieved by engineering the wild-type subtilisin YaB promoter into an artificial promoter and expressed in Bacillus subtilis host. This artificial promoter provides an efficient tool to produce mutant subtilisin YaB or other recombinant heterologous proteins by B. subtilis at high level.  相似文献   

2.
Bacillus subtilis is an ideal host for the production of extracellular heterologous proteins. Antifreeze protein (ice structuring protein, ISP) is a potent additive in cryogenic preservation of food products. In this investigation, the first production of a recombinant ISP was achieved by using a high-efficient artificial promoter and a signal peptide from subtilisin YaB. The functional ISP was expressed extracellularly at a high level by a protease deficient host, B. subtilis WB800. This study provides an efficient tool to produce recombinant food peptide additive at a high level and overcomes the problem of natural resources limitation as well.  相似文献   

3.
本研究通过串联启动子方式实现纳豆激酶在枯草芽孢杆菌WB800中的高效分泌表达。通过对几种现有报道的强启动子的比较并对其进行串联操作,确定生产纳豆激酶的最优启动子及纳豆激酶的最高产量。本研究首先在枯草芽孢杆菌WB800中成功构建五种含不同强启动子的重组质粒p SG101(P_(HpaII)),p SG102(PBcapr E),p SG103(Plux S),p SG104(Pgsi B)和p SG105(Pyxi E),实现纳豆激酶分泌表达,并对其纤溶活性进行测定。结果表明,启动子P_(HpaII)介导的纳豆激酶纤溶活性(110.80 FU/m L)明显优于其他四种启动子。通过对启动子P_(HpaII)进行多次串联,成功构建质粒p SG106(P_(HpaII)-P_(HpaII)),p SG107(P_(HpaII)-P_(HpaII)-P_(HpaII))和p SG108(P_(HpaII)-P_(HpaII)-P_(HpaII)-P_(HpaII))。数据显示,菌株Bacillus subtilis WB800/p SG107(P_(HpaII)-P_(HpaII)-P_(HpaII))纳豆激酶产量最高为213.30 FU/m L,相比单个启动子P_(HpaII),提高了92.51%。通过对五种强启动子的比较以及对其进行串联操作,成功实现纳豆激酶在枯草芽孢杆菌WB800的高效表达,纤溶活性最高为213.30 FU/m L,与现有相关报道相比有明显优势。  相似文献   

4.
将来源于嗜热脂肪芽孢杆菌的启动子连同β-半乳糖苷酶bgaB基因经PCR扩增后,连接在T载体上,再取代枯草杆菌载体pZ01-bgaB的启动子,将其在枯草杆菌宿主WB600中表达.经摇瓶发酵20h,得到乳糖酶活力6.37U/mL,比活力3.814U/mg,SDS-PAGE电泳显示有明显重组蛋白质条带.证明了嗜热脂肪芽孢杆菌来源的启动子在枯草杆菌中是完全适用的.  相似文献   

5.
从中国传统豆豉中分离筛选出一株高产纤溶酶菌株Bacillus subtilis DC33,并研究营养和环境因素条件对 DC33产酶的影响.在单因素水平试验基础上,选择对 DC33产纤溶酶影响较大的聚蛋白胨、半乳糖、硫酸镁、硫酸锂和吐温 80五因素,通过正交旋转组合设计得到DC33产酶活力与营养因素水平的回归方程,极值分析得DC33优化发酵培养基(g/L):聚蛋白胨22,半乳糖1.56,硫酸镁0.5,硫酸锂0.01,K2HPO4 2.0,NaH2PO4 1.0,CaCO3 2.0,吐温80 0.33 mL.在此条件下,DC33产纤溶酶达到780 U/mL,较优化前提高86.7%.  相似文献   

6.
为了实现过氧化氢酶的工业化生产,作者对实验室前期构造成功的B.subtilis WSHDZ-01(p STOP1622-kat A)进行了3 L发酵罐的发酵验证,并且通过数据分析优化了碳氮源浓度,使得过氧化氢酶酶活达到35 398 U/m L,比优化前提高53.41%。在此基础上,分别进行了24 L发酵罐和500 L发酵罐的放大实验,最高酶活分别达到28 940、23 190 U/m L。结果表明,该过氧化氢酶在产酶水平上已经达到工业化生产需求,为更大规模的工业化生产奠定坚实的基础。  相似文献   

7.
对食品安全认可的枯草芽孢杆菌进行菌株改造,利用生物发酵法制备N-乙酰神经氨酸。首先通过基因合成获取来自枯草芽孢杆菌溶源体的Pholin启动子并构建了p MK4-Pholin-GFP质粒,转入枯草芽孢杆菌,以GFP为报告基因,对Pholin及其它常见的强启动子进行了转录效率的比较,然后将优化后的Pholin用于构建N-乙酰神经氨酸表达质粒p MK4-Pholin-neu BC。研究结果显示:Pholin启动子是一种优异的枯草芽孢杆菌组成型强启动子,在利用LB进行发酵培养的实验中,Pholin的转录效率为同样方式构建下的P43启动子的2.62倍。通过N-乙酰神经氨酸表达质粒,可以成功地在枯草芽孢杆菌168菌株中实现N-乙酰神经氨酸的重组生产,摇瓶培养中N-乙酰神经氨酸的产量为0.226 g/L。本文为枯草芽孢杆菌进行N-乙酰神经氨酸的工业化发酵生产奠定了研究基础。   相似文献   

8.
普鲁兰酶可特异性地水解支链淀粉得到直链淀粉,因而在淀粉加工过程中具有重要的应用。本研究从Bacillus naganoensis ATCC53909基因组中克隆了普鲁兰酶基因pul,并克隆到大肠杆菌-枯草芽孢杆菌穿梭载体p BE中,构建表达载体p BE-pul。在此基础上,将来源于枯草芽孢杆菌、地衣芽孢杆菌以及解淀粉芽孢杆菌中的17个高表达基因的启动子分别克隆到表达载体p BE-pul中,并转化至Bacillus subtilis ATCC6051?10,成功构建了十七株含有不同启动子介导普鲁兰酶分泌表达的重组菌株。对重组菌株的分泌表达比较发现,启动子P43和Pspov G介导的普鲁兰酶活性明显优于其他启动子,其中Pspov G介导的普鲁兰酶活性更高。同时,还使用了启动子Pspov G介导N端的108个氨基酸缺失的pul324突变体进行分泌表达。通过对17种启动子的比较和两个普鲁兰酶基因的比较,本研究构建的一株重组菌株的普鲁兰酶的表达更为高效,其活性高达389.85 U/mL,后者显著高于现有的相关报道。  相似文献   

9.
重组枯草芽孢杆菌分泌表达腺苷酸脱氨酶   总被引:1,自引:0,他引:1  
目的:利用基因重组技术,构建腺苷酸脱氨酶高效表达的重组菌株。方法:以前期构建的产腺苷酸脱氨酶重组大肠杆菌BL21(DE3)/pET28α-AMPD中来源于鼠灰链霉菌(Streptomyces murinus)目的基因为模板,设计特异性引物扩增腺苷酸脱氨酶基因,亚克隆至游离型表达载体pHY-WZX,转化枯草芽孢杆菌WB600。结果:成功筛选获得了一株产腺苷酸脱氨酶重组枯草芽孢杆菌WB600/pHY-AMPD,进一步在摇瓶中探究了发酵培养基成分对重组酶发酵的影响。获得了较优发酵培养基为:葡萄糖10 g/L、 酵母膏30 g/L、CaCl2 0.5 g/L、柠檬酸三钠1 g/L、NaH2PO4 10 g/L、K2HPO4 10 g/L、(NH4)2SO4 5 g/L,37 ℃、200 r/min发酵60 h摇瓶发酵液酶活力可达到(2 230±50) U/mL。结论:本研究实现了鼠灰链霉菌来源的腺苷酸脱氨酶基因在枯草芽孢杆菌中表达。  相似文献   

10.
为获得适应于酒糟酸性环境的木聚糖酶,将内源微生物耐酸性环境的野生Bacillus velezensis P7木聚糖酶基因克隆到枯草芽孢杆菌WB800中,纯化后通过SDS-PAGE电泳显示出约40 ku的蛋白多肽。为增加枯草芽孢WB800-P7工程菌株在高密度发酵中细胞外分泌木聚糖酶的产量,进行诱导和培养条件优化,用正交试验分析得出温度对产酶影响最大,确定菌株分泌重组蛋白的条件结果表明:最佳诱导条件为OD600 0.8、IPTG 1.2 mmol/L,最佳发酵条件为pH 6.0、培养温度35 ℃、接种量2%、摇床转速160 r/min。在该条件下发酵16 h,经重复验证,酶活力达到4.21 IU,与优化前相比,酶活力提高了64.45%。并探究重组酶的耐受性,结果表明在强酸性到中性条件下(pH 5.0~7.0),其残余酶活力达到初始酶活力的80%以上。试验成功构建了木聚糖酶工程菌并较好表达蛋白,且重组木聚糖酶在酸性条件的耐受性良好。  相似文献   

11.
D-阿洛酮糖是一种重要的稀少糖,在食品、化妆品和医药等领域都有着广泛的应用价值。目前,工业上生产D-阿洛酮糖以生物酶法为主。由于传统酶法存在步骤烦琐、成本高、产物纯化分离难等缺点,已难以满足工业生产需要。近年来,全细胞合成体系以其低成本、便操作、易分离等特点受到人们的关注。以一种来源于Caballeronia insecticola的D-阿洛酮糖3-差向异构酶(DAEase)为研究对象,实现了在生产安全菌株枯草芽孢杆菌WB800中的高效异源表达,并以D-果糖为底物全细胞催化合成D-阿洛酮糖。为了提高DAEase的表达量,通过设计构建含有不同组成型启动子的重组菌株对其表达进行了优化。并对全细胞反应体系的条件(温度、pH值、金属离子、细胞浓度)进行了优化,探究了不同底物浓度下D-果糖的转化效率。结果表明:启动子PylbP介导下的重组DAEase在枯草芽孢杆菌WB800内具有较高的表达水平,重组DAEase全细胞反应的较适温度为65℃,较适pH值为9.5,较适金属离子为5 mmol/L Mg2+。采用全细胞方法以500 g/L D-果糖为底物制备D...  相似文献   

12.
潘丽洁  王斌  潘力 《食品科学》2023,44(2):181-188
通过启动子优化、宿主筛选,构建了C端带His-tag的胰凝乳蛋白酶类蛋白酶SplB表达载体,成功实现了SplB在枯草芽孢杆菌中的重组表达,对纯化的重组SplB进行酶学性质研究,并实现了重组蛋白酶SplB在重组蛋白Prx标签切割中的应用。结果表明,以枯草芽孢杆菌ATCC6051Δ10为宿主,通过启动子P43介导的重组蛋白酶SplB表达活力最高(10.24 U/mL)。通过亲和层析纯化了重组表达的SplB,并进行酶学性质研究,其最适温度为40℃,最适pH值为8.5,且具有良好的温度和pH值稳定性。在离子浓度较低情况下,Co2+对重组SplB活力有促进作用,Mg2+、K+不影响酶活力;而Cu2+、Zn2+、Ni+离子抑制SplB活力;十二烷基硫酸钠极大抑制重组SplB活力。将重组SplB应用于切割重组蛋白Prx的标签,结果表明,重组SplB具有WELQ肽段标签切割作用,并且SplB浓度越高,目标条带越浓。本研究为优化SplB的重组表达及在食...  相似文献   

13.
通过基因重组的方法,将枯草芽孢杆菌168的α-淀粉酶基因amyE(除掉启动子)整合在Paxo1质粒上,然后将重组表达质粒Paxo1-amyE导入枯草芽孢杆菌168菌株基因组中的半乳糖苷酶基因lacZ位点。通过转化筛选和重组基因分析,获得含有重组α-淀粉酶基因的工程菌株PaE。经过添加4 种不同的碳源发酵实验检测,在外加2 g/100 mL木糖诱导的情况下,重组菌株的α-淀粉酶产量均有增加。而且重组菌株在一定程度上能够克服葡萄糖等还原性糖引起的碳代谢阻遏现象,提高了α-淀粉酶产量。  相似文献   

14.
为了实现重组角蛋白酶在基因工程菌Bacillus subtilis WB600中的高效生产,在3 L发酵罐中对发酵条件和补料策略进行了优化,建立了补料分批发酵工艺。研究发现,两阶段控制pH,前6小时控制pH 7.0,后期控制pH 8.0、DO 20%,发酵过程以葡萄糖为流加碳源,7~11 h以μ为0.15 h-1指数流加、12~15 h以μ为0.1 h-1指数流加、16~27 h恒速流加葡萄糖3 g/(L·h),在30 L发酵罐水平上,27 h酶活达到864 U/mL,生产强度为31.8 U/(mL·h),国外报道的酶活达到2 900 mL,酶活在国内属领先水平,为重组枯草芽孢杆菌产角蛋白酶的工业化生产打下了坚实的基础。  相似文献   

15.
枯草杆菌发酵生产VK2的技术工艺条件初探   总被引:1,自引:0,他引:1  
对枯草杆菌发酵生产VK2的培养条件进行优化的结果表明,培养基中大豆蛋白和玉米淀粉的浓度过高或过低均不利于VK2的产生与积累,其最适浓度均为2%。甘油作为枯草杆菌的补助碳源对VK2的产生与积累具有一定的促进作用,其最适添加量为5%。1%蔗糖作为枯草杆菌生长的外源性糖源对VK2的生产具有明显的促进作用,但Ca2 、Mg2 、K 等一些无机离子对VK2的产生都表现出不同程度的抑制作用。  相似文献   

16.
响应面法优化枯草芽孢杆菌产蛋白酶的发酵条件   总被引:3,自引:0,他引:3  
在单因素试验的基础上,应用响应面分析法对影响枯草芽孢杆菌产蛋白酶的因素进行分析,得到了最佳发酵条件为温度40℃、pH8.04、接种量8.3%、发酵时间56h,此条件下的蛋白酶酶活为247.8U/ml,比单因素试验的最高酶活228.3U/ml提高了8.54%。  相似文献   

17.
为了提高枯草芽孢杆菌B4的蛋白酶产量,采用全基因组改组技术进行菌株选育,先通过紫外诱变构建了B4菌的突变体库,在优化其原生质体制备和再生条件的基础上,以其中4株诱变菌株(BRS1、BRS2、BRS5、BRS6)作为亲本,采用PEG介导的方法进行两次多亲本的全基因组改组,同时,结合双亲灭活的筛选方法,共筛选出3株酶活力大幅度提高并能稳定遗传的优良菌株,为BRS1、BRS5、BRS6,酶活力最高达2175.81U/mL,达到原始菌株的3.01倍。  相似文献   

18.
耐热β-半乳糖苷酶相比酵母来源的中温乳糖酶用于低乳糖牛奶的生产具有潜在的优越性。在已将来源于嗜热脂肪芽孢杆菌的耐热β-半乳糖苷酶基因(bgaB)克隆入枯草芽孢杆菌得到重组菌WB600/pMA5-bgaB后,对此重组菌的发酵条件进行了研究。重组菌WB600/pMA5-bgaB在发酵过程中具有良好的遗传稳定性,可溶性淀粉和胰蛋白胨是重组菌生长和酶活表达的适合碳源和氮源。WB600/pMA5-bgaB适宜的摇瓶培养条件为接种量3%~5%,装液量30~50/250 mL(三角瓶),起始pH7.0,摇床转速220r/min。在7L反应器中进行分批发酵,研究表明,pH调控和溶氧控制对提高工程菌发酵产酶具有明显帮助,pH控制在7.0,溶氧控制在50%可提高发酵酶活;补料培养后菌体密度OD_(600)可达到47,酶活达到37.5U/mL,比在初始条件下提高了10倍。  相似文献   

19.
Exo-polygalacturonase (exo-PG) (PG, EC 3.2.1.67) has various applications in food processing industries, such as in juice extraction and clarification, bakery, and distillery processing. This study reports the exo-PG production by Bacillus subtilis CM5 isolated from cow ruminant microflora, which was comparable to marketed pectinase (Pectinex®, Novozyme, Denmark). The optimum temperature, pH, and incubation period for optimum exo-PG production (82.0–83.2 units) were 50?C, 7.0, and 36 h, respectively. B. subtilis produced more exo-PG in culture medium with peptone (1%) than other nitrogen sources such as beef extract, casein, yeast extract, ammonium sulphate, and ammonium acetate. However, ammonium chloride and urea (1%) inhibited enzyme production. In laboratory fermentor studies, exo-PG production by B. subtilis was 25.6% higher than shake flask cultures. Application of crude exo-PG from B. subtilis resulted in 13.3% increase in yield of carrot juice as compared to juice extracted with Pectinex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号