首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sequential inoculation of yeasts Williopsis saturnus var. mrakii NCYC2251 and Saccharomyces cerevisiae var. bayanus R2 on the volatile profiles of papaya wine were investigated at an inoculum ratio of 1000 (W. saturnus) to 1 (S. cerevisiae). Inoculation of S. cerevisiae after seven days' fermentation with W. saturnus produced papaya wine with more acetate esters and fruitiness than the control (simultaneous inoculation). However, inoculation of W. saturnus after two days' fermentation with S. cerevisiae resulted in most of the volatile composition being comparable to the control, except for the enhanced amount of ethyl esters. The first inoculated yeast dominated the fermentation. The study suggests that sequential inoculation of non-Saccharomyces and Saccharomyces yeasts at a certain inoculum ratio may be a valuable tool to manipulate yeast succession and to modulate the volatile profiles and organoleptic properties of papaya wine.  相似文献   

2.
Durian is a seasonal tropical fruit widely grown and highly prized in Southeast Asia. This is a first study to assess the transformation of durian constituents during fermentation with mono- and mixed-cultures of Saccharomyces cerevisiae and Williopsis saturnus with a view to developing a novel alcoholic beverage. A diversity of volatiles was produced especially alcohols and esters, while those volatiles initially present in durian, particularly the character-impact sulphur-containing odorants, were transformed. Most of the sulphur-containing compounds decreased with fermentation. 3-(Ethylthio)-1-propanol was produced initially then remained relatively stable, whereas ethyl thioacetate was formed initially then decreased in all culture types. The kinetic changes and concentrations of volatile compounds were similar in both the mixed-culture and the S. cerevisiae monoculture, except for higher amounts of alcohols in the mixed-culture. The W. saturnus monoculture, on the other hand, was the main producer of acetate esters. Sensory evaluation revealed a strong sulphury note retained in all fermentations but less unfavourable metallic and yeasty notes in the mixed-culture. The study suggests that biotransformation by yeasts can be effective in modifying the constituents and modulating the organoleptic properties of durian.  相似文献   

3.
This study investigated the formation and utilization of volatile compounds during papaya juice fermentation by a mixed culture of Saccharomyces cerevisiae and Williopsis saturnus. Time-course papaya juice fermentations were carried out using pure cultures of S. cerevisiae var. bayanus R2 and W. saturnus var. mrakii NCYC2251 and a mixed culture of the two yeasts at a ratio of 1:1000 (R2:NCYC2251). Changes in S. cerevisiae cell population, Brix, sugar consumption and pH were similar in the mixed culture and in the S. cerevisiae monoculture. There was an early growth arrest of W. saturnus in the mixed culture fermentation. A range of volatile compounds were produced during fermentation including fatty acids, alcohols, aldehydes and esters and some volatile compounds including those initially present in the juice were utilized. The mixed culture fermentation of S. cerevisiae and W. saturnus benefited from the presence of both yeasts, with more esters being produced than the S. cerevisiae monoculture and more alcohols being formed than the W. saturnus monoculture. The study suggests that papaya juice fermentation with a mixed culture of S. cerevisiae and W. saturnus may be able to result in the formation of more complex aroma compounds and higher ethanol level than those using single yeasts.  相似文献   

4.
The effects of the inoculum ratio of Williopsis saturnus var. saturnus NCYC22 and Saccharomyces cerevisiae var. bayanus EC-1118 at 1:200 and 1:800 on the chemical and volatile compositions of grape wine were studied in sequential fermentation. The grape juice was first inoculated with Williopsis (W.) saturnus for 9 d; thereafter, Saccharomyces (S.) cerevisiae was inoculated to continue the fermentation until d 19. The cell population of W. saturnus disappeared by d 13, with S. cerevisiae dominating until the end of the fermentation in both inoculum ratios. The changes in yeast count, pH, total soluble solids, sugars, organic acids, and amino acids were similar between the two inoculum ratios. A range of volatile compounds was formed, including alcohols, esters, fatty acids, aldehydes, and terpenes. There were significant differences between both inoculum ratios for medium-chain fatty acids (C8, C10, and C12), ethyl esters of fatty acids of C6, C10, C12, and C14 as well as isoamyl octanoate, while other volatiles were statistically the same.  相似文献   

5.
Cofermentation of longan juice by mixed cultures of Saccharomyces cerevisiae var. bayanus EC‐1118 and Williopsis saturnus var. saturnus CBS254 at two inoculation ratios (EC‐1118:CBS254 = 1:100 and 1:1000 cfu mL?1) was performed to ascertain their impact on longan wine aroma compound formation. The results showed improved aroma compound profiles in the longan wine fermented with mixed yeasts in comparison with the longan wines fermented with single yeasts in terms of increased production of acetate esters, fatty acid ethyl esters, alcohols and carboxylic acids. The impact of cofermentation on longan wine aroma formation was affected by the ratio of S. cerevisiae EC‐1118 to W. saturnus CBS254 with 1:100 cfu mL?1 being more effective. This research suggests that the inoculation ratio of mixed yeasts may be used as an effective means of manipulating longan wine aroma.  相似文献   

6.
Terpene profile of Muscat wines fermented by Saccharomyces species and hybrid yeasts was investigated. The amount of geraniol decreased in most wines with respect to the initial must except for Saccharomyces bayanus wines. On the other hand, alpha-terpineol amount was higher in wines fermented by Saccharomyces cerevisiae and hybrid yeasts. The amount of linalool was similar in all wines and comparable to the amount in the initial must. Lower levels of beta-d-glucosidase activity were found in the hybrid yeasts with respect to S. cerevisiae. Moreover, no relationship between beta-d-glucosidase activity and terpenes profile in Muscat wines fermented with Saccharomyces species and hybrids was found. Growth of yeasts on minimum medium supplemented with geraniol showed bioconversion of geraniol into linalool and alpha-terpineol. Percentages of geraniol uptake and bioconversion were different between Saccharomyces species and hybrids. Strains within S. bayanus, Saccharomyces kudriavzevii and hybrids showed higher geraniol uptake than S. cerevisiae, whereas the percentage of produced linalool and alpha-terpineol was higher in S. cerevisiae and hybrid yeasts than in S. bayanus and S. kudriavzevii. The relationship between geraniol uptake and adaptation of Saccharomyces species to grow at low temperature is discussed.  相似文献   

7.
Non-Saccharomyces yeast species assume an important role in wine flavor. Notwithstanding, the chemical basis for the flavor characteristics of wines from some grape varieties is not yet defined. The value of this work lies in the use of Malvar white grape, an autochthonous variety from Madrid (Spain) winegrowing region to conduct spontaneous fermentations. This is the first time that a comparative characterization of a wide range of non-Saccharomyces species and a comprehensive analysis of these yeast-derived volatiles has been carried out in this grape variety. β-glucosidase and pectinase (polygalacturonase) extracellular activities were tested on agar plates as primary selection criteria among the 504 non-Saccharomyces isolated from Malvar spontaneous fermentations during four consecutive harvests. Analysis of the wines obtained after fermentation using the selected yeast strains indicates that non-Saccharomyces yeasts isolated along the fermentative process seem that could have a positive impact, showing a high variability in the volatile compounds contributing to the organoleptic characteristics of Malvar wines. Torulaspora delbrueckii CLI 918 was defined as the yeast strain with potential interest for its contribution to the aromatic wine profile with flowery and fruity aromas and could be used in mixed starter cultures with Saccharomyces cerevisiae. However, Hanseniaspora guilliermondii increased the volatile acidity and ethyl acetate, but this species along with the genus Pichia and Candida seem to provide a high quantity of extracellular enzymes which may be beneficial in wine making.  相似文献   

8.
The aim of this study was to assess and compare fermentation characteristics and aromatic profile of plum wines produced with indigenous microbiota and pure cultures of different selected yeast. Experiments were carried out with plum (Prunus domestica L.) varieties of different fruit ripening times (?a?anska rana, ?a?anska lepotica, and Po?ega?a). Wine fermentations were conducted by the activity of indigenous microbiota, commercially available Saccharomyces cerevisiae and Saccharomyces bayanus yeast strains and joint activity of Schizosaccharomyces pombe and S. cerevisiae (sequential inoculation). Statistically significant differences in fermentative characteristics and the content of certain volatile compounds were observed as a result of metabolic activity of various indigenous and/or selected yeasts during fermentation of plum pomace. Minimal duration of fermentation (4 to 5 d) and fastest ethanol production rate (from 12.3 to 15.5 g/L/d) were the characteristics of the studied S. cerevisiae strains. Isobutanol, 3‐methyl‐1‐butanol, 1‐heptanol, and 1‐octanol were the most prevalent higher alcohols in the tested plum wine samples. The predominant ester in plum wines was ethyl acetate, ethyl lactate, amyl acetate, isoamyl acetate, and ethyl palmitate, esters responsible for the floral and fruity olfactory tones, were also present in large amounts. Also, the use of S. cerevisiae strains resulted in the production of plum wines with better sensory characteristics than ones produced with other investigated yeasts. Obtained results are significant since there is limited data on the compounds responsible for the unique flavor of plum wine, as well as on the impact of different yeast starter cultures application on the overall quality of fruit wines.  相似文献   

9.
The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol.  相似文献   

10.
11.
Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation).  相似文献   

12.
The use of mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae in wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. The effect of sequential inoculation of Wickerhamomyces anomalus (formerly Hansenula anomala) with interesting enological properties in terms of secondary metabolite production and a commercial S. cerevisiae strain in fermentation of non-sterilized red musts from Mazuela variety has been examined. The wines elaborated by sequential inoculation presented higher levels of acetates and ethyl esters, compounds that supply a fruity note, higher levels of lineal alcohols, which are responsible for herbaceous notes and lower concentrations of organic acids, that contribute to increase the aromatic quality, than wines produced by a S. cerevisiae monoculture. Both types of wines were comparable in levels of volatile acidity, glycerol, lactic acid and succinic acid produced. Sensory analysis showed that red wines obtained by mixed fermentations were preferred by 71.5 % of the tasters and were particularly appreciated for its floral and/or fruity notes.  相似文献   

13.
This work investigated the effects of cofermentation and sequential inoculation of Torulaspora delbrueckiiBiodiva and Saccharomyces bayanusEC‐1118 on chemical and volatile components of durian wines. Cofermentation and sequential inoculation resulted in higher production of ethanol (6.2% and 7.7% v/v, respectively) relative to the control (5.3% for S. bayanus and 5.8% for T. delbrueckii). Further, cofermentation and sequential inoculation produced higher amounts of acetyl esters and higher alcohols especially isoamyl alcohol and 2‐phenylethyl alcohol than monoculture fermentation. Most endogenous sulphur volatiles, especially disulphides that impart a character‐impact durian odour, declined to trace levels, but new ones such as thioesters were formed. Sulphur volatiles in the durian wines fermented by cofermentation and sequential inoculation accounted for 0.03% and 0.05% of total peak area. The study suggests that the use of S. bayanus in conjunction with non‐Saccharomyces such as T. delbrueckii may improve the aromatic intensity and complexity of durian wine.  相似文献   

14.
The effect of simultaneous or sequential inoculation of Hanseniaspora vineae CECT 1471 and Saccharomyces cerevisiae T73 in non-sterile must on 2-phenylethyl acetate production has been examined. In both treatments tested, no significant differences in Saccharomyces yeast growth were found, whereas non-Saccharomyces yeast growth was significantly different during all days of fermentation. Independently of the type of inoculation, S. cerevisiae was the predominant species from day 3 till the end of the fermentation. The dynamics of indigenous and inoculated yeast populations showed H. vineae to be the predominant non-Saccharomyces species at the beginning of fermentation in sequentially inoculated wines, whereas the simultaneous inoculation of S. cerevisiae did not permit any non-Saccharomyces species to become predominant. Differences found in non-Saccharomyces yeast growth in both fermentations influenced the analytical profiles of final wines and specifically 2-phenylethyl acetate concentration which was two-fold increased in sequentially inoculated wines in comparison to those co-inoculated. In conclusion we have shown that H. vineae inoculated as part of a sequential mixed starter is able to compete with native yeasts present in non-sterile must and modify the wine aroma profile.  相似文献   

15.
Several studies have reported the beneficial influence of non-Saccharomyces yeasts and their potential applications in the wine industry, mainly in mixed-culture fermentation with S. cerevisiae. The potential impact of 15 non-Saccharomyces strains from 7 species on 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) release in model medium and Sauvignon Blanc must was evaluated after partial fermentation. Whereas the impact of non-Saccharomyces on 4MSP release in both media was low, some M. pulcherrima, T. delbrueckii and K. thermotolerans strains had a high capacity to release 3SH, despite their minimal fermentation activity. As previously demonstrated for Saccharomyces yeast, this contribution is strain dependant. Taking into account their dynamic and quantitative presence during the whole process, the real impact of non-Saccharomyces yeast on 4MSP and 3SH release was evaluated using a recreated community simulating the yeast ecosystem. Our results revealed a positive impact on 3SH release in Sauvignon Blanc wines by promoting non-Saccharomyces yeast activity and delaying the growth of S. cerevisiae. Some non-Saccharomyces yeast strains are capable of making a positive contribution to volatile thiol release in wines, essentially during the pre-fermentation stage in winemaking, when this microbiological sub-population is dominant.  相似文献   

16.
The impact of fusel oil addition on volatile compounds formation in papaya wine fermented with yeast Williopsis saturnus var. mrakii NCYC2251 was studied with a view to enhancing papaya wine aroma production. Time-course papaya juice fermentations were carried out using W. saturnus var. mrakii NCYC2251 with fusel oil added (0, 0.1 and 0.5% v/v). Fermentation characteristics in terms of yeast growth, Brix and pH changes were similar for all fermentations except for those added with 0.5% (v/v) fusel oil. The addition of 0.5% (v/v) fusel oil inhibited yeast growth. A wide range of volatile compounds were produced during fermentation including acids, alcohols, esters and aldehydes with esters being the most abundant volatile compounds produced. The addition of 0.1% (v/v) fusel oil reduced the production of undesirable volatiles such as ethyl acetate and acetic acid, while increasing the desirable volatiles production such as ethanol and acetate esters. This study suggests that papaya juice fermentation with W. saturnus var mrakii NCYC 2251 together with a low concentration of added fusel oil can be another means of modulating papaya wine aroma compound formation.  相似文献   

17.
Saccharomyces cerevisiae is the yeast species predominating the alcoholic fermentation of grape must. The aim of this research was to evaluate the impact of indigenous S. cerevisiae strains biodiversity on the aroma of wines from Negroamaro grapes. Grapes collected in two different Negroamaro producing micro districts in Salento (Southern Italy), were subjected to natural fermentation and two indigenous S. cerevisiae populations were isolated. Fifteen strains for each of the two populations were selected and tested by micro fermentation assay in order to evaluate their specific contribute to the volatiles composition and sensory impact of the produced wines. The aromatic profile of wines obtained by each selected strain was characterized by different contents of acetates, ethyl esters of fatty acids, higher alcohols, thus showing to be related to the strains geographical origin. The sensorial analysis of wines produced by the six best performing strains confirmed that they are good candidates as industrial starter cultures, This study indicates that the use of a “microarea-specific” starter culture is a powerful tool to enhance the peculiarity of wines deriving from specific areas.  相似文献   

18.
The impact of mixed cultures of Hanseniaspora osmophila and Saccharomyces cerevisiae with different initial yeast ratios on wine composition has been examined. The mixed culture significantly affected sugar consumption, the main enological parameters and ester concentrations, with the exception of glycerol, isoamyl acetate and diethyl succinate levels. Remarkably, in wines obtained with mixed cultures the concentration of 2-phenylethyl acetate was approximately 3- to 9-fold greater than that produced by S. cerevisiae pure culture. Moreover sensory evaluation revealed a stronger fruity character in wines fermented with mixed cultures than in control wines. Independently of the mixed culture used, all wines showed concentrations of acetic acid and ethyl acetate within the ranges described for wines. Our data suggest that a mixed culture of H. osmophila and S. cerevisiae can be used as a tool to increase 2-phenylethyl acetate in wine and that its concentration can be controlled by modulating the initial yeast ratio in the culture.  相似文献   

19.
The changes in volatile compounds during papaya juice fermentation with three Williopsis saturnus yeasts were investigated in this study. Time‐course papaya juice fermentations were carried out using three Williopsis saturnus yeasts: W. saturnus var. mrakii NCYC2251, W. saturnus var. saturnus NCYC22 and W. saturnus var. sargentensis NCYC2727. Changes in yeast cell population, Brix and pH were similar among the three yeasts, which preferentially utilised glucose over fructose while partially degrading l ‐malic acid. A range of volatile compounds were produced during fermentation including fatty acids, alcohols and esters with esters being the most abundant volatile compounds produced. Benzyl isothiocyanate, butyric acid, 2‐ethylhexanol, benzaldehyde and β‐damascenone present in the papaya juice were metabolised to trace levels during fermentation. There were significant variations among the three yeasts in their ability to produce and metabolise volatile compounds during fermentation. The study suggests that papaya juice fermentation with W. saturnus yeasts is able to result in the formation of a more complex aroma compounds.  相似文献   

20.
Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest for the wine industry for technological and sensory reasons. We have analysed how mixed inocula of the main non-Saccharomyces yeasts and S. cerevisiae affect fermentation performance, nitrogen consumption and volatile compound production in a natural Macabeo grape must. Sterile must was fermented in triplicates and under the following six conditions: three pure cultures of S. cerevisiae, Hanseniaspora uvarum and Candida zemplinina and the mixtures of H. uvarum:S. cerevisiae (90:10), C. zemplinina:S. cerevisiae (90:10) and H. uvarum:C. zemplinina:S. cerevisiae (45:45:10). The presence of non-Saccharomyces yeasts slowed down the fermentations and produced higher levels of glycerol and acetic acid. Only the pure H. uvarum fermentations were unable to finish. Mixed fermentations consumed more of the available amino acids and were more complex and thus better able to synthesise volatile compounds. However, the amount of acetic acid was well above the admissible levels and compromises the immediate application of mixed cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号