首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
Two twin forced convection dryers of 1.5 m3 were built in Majorca (Spain). They are of a mixed kind, with solar air collectors and a green house type chamber. A wooden frame supports polycarbonate walls. After two years operation they have been proven weather resistant. Six solar air collectors 2.12 × 1.05 m were used in each dryer.

Apricots were processed in both dryers and at open sun. Three different tray heights were tested 5, 9 and 12 cm. The best results were obtained with 12 cm trays. Recycling part of the exhaust air improves the efficiency of the dryer. Blanching the fruits makes no difference to the dehydration rate. The rate of SO2 loss during the drying process is higher within the chamber.  相似文献   

2.
K. S. ONG 《Drying Technology》2013,31(4-5):999-1009
ABSTRACT

The performance of three different types of dryers for the hot air drying of sawn-limber planks are compared. These were the electric resistance dryer, solar dryer, and the dehumidifier dryer. Whilst the electric and solar dryers depended only upon hot air for drying, the dehumidifier dryer relied on hot dehumidified air. The results of investigations carried out on timber drying employing these three types of dryers in the Engineering Faculty are compiled and compared here in this paper. The results showed that the electric dryer produced the fastest drying lime and lowest moisture content, followed by dehumidifier drying. The solar dryer achieved a lower moisture content and a faster drying rate compared to natural drying, although the difference in drying times was marginal.  相似文献   

3.
K. S. Ong 《Drying Technology》2013,31(3-4):1231-1237
ABSTRACT

Solar dryers have been considered for timber drying in a number of countries because of the expected savings in drying costs. From a review of past works on solar, natural, and conventional drying it was observed that while solar dryers were able to dry timber faster compared to natural drying, the difference was only marginal in some instances. The drying rates are expected to be dependent upon ambient conditions in which the dryera are operated. Solar dryers would operate more efficiently in countries with low humidity than in tropical regions. Thus the thermal performance and also the economics of solar dryer is country dependent. In the present paper, a comparison of the drying rates obtained with a solar dryer is made with that obtained with an electrically operated drying kiln.  相似文献   

4.
ABSTRACT

A procedure was outlined to optimize industrial dryers for ceramics. The procedure consists of drying experiments on full-size products in a lab dryer, measurements of characteristics of the dryer and by simulations with DrySini. DrySim is a flexible simulation program in which a user can model his own dryer with predefined components. Two examples are given, the optimization of a chamber dryer and the optimization of a tunnel dryer. In both examples the production of the existing dryers could be increased and at the same time cost of energy could reduced by optimal use of waste air of kilns and minimizing mixing of kiln air with ambient air.  相似文献   

5.
G. Wisniewski 《Drying Technology》2013,31(6-8):2015-2024
ABSTRACT

In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.  相似文献   

6.
Saffron is the most expensive spice and Iran is the largest producer of this crop in the world. Saffron quality is profoundly affected by the drying method. Recent research has shown that hybrid photovoltaic–thermal solar power systems are more efficient in comparison with individual photovoltaic and thermal systems. In addition, heat pump dryers are highly energy efficient. Furthermore, they are suitable for heat-sensitive crops such as saffron. Therefore, in the present study, the performance of a hybrid photovoltaic–thermal solar dryer equipped with a heat pump system was considered for saffron drying, in order to obtain a high-quality product and reduce fossil fuel consumption. The effect of air mass flow rate at three levels (0.008, 0.012, and 0.016 kg/s), drying air temperature at three levels (40, 50, and 60°C), and two different dryer modes (with and without the heat pump unit) on the operating parameters of the dryer was investigated. The results of the investigation showed that total drying time and energy consumption decreased as air flow rate and drying air temperature increased. Applying a heat pump with the dryer led to a reduction in the drying time and energy consumption and an increase in electrical efficiency of the solar collector. The average total energy consumption was reduced by 33% when the dryer was equipped with a heat pump. Maximum values for electrical and thermal efficiency of the solar collector were found to be 10.8 and 28%, respectively. A maximum dryer efficiency of 72% and maximum specific moisture extraction rate (SMER) of 1.16 were obtained at an air flow rate of 0.016 kg/s and air temperature of 60°C when using the heat pump.  相似文献   

7.
Three different solar drying methods were carried out on four different medicinal plants to investigate the benefits of using an unglazed transpired solar dryer (UTSD) over other traditional methods. Methods involved included drying in an unglazed transpired solar dryer (using suction air flow rate of 0.06 m3s?1), drying in the open air under direct sun rays and a common traditional drying method in a shaded drying house. The three drying methods were used to dry the following medicinal plants: henna (Lawsonia inermis L.), rosemary (Rosmarinus officinalis L.), marjoram (Majorana hortensis L.), and moghat (Glossostemon bruguieri L.). Drying processes were carried out under the climatic weather conditions of Ismailia, Egypt. Drying rate, drying ratio, and the medicinal plants qualities in terms of oil quantity and sensation tests were considered. The results showed higher oil quantity obtained from rosemary and marjoram dried in the UTSD, compared with those dried in the shaded drying house and in the open air under direct sun.  相似文献   

8.
ABSTRACT

A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace' drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporator bypass air affected markedly on the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.  相似文献   

9.
In this study, a temperature-controlled solar air collector was designed and tested for drying. Solar drying systems have two disadvantages. First one is the lack of ability to store energy and the second one is the lack of temperature control. This study presents the experimental analysis of an air collector that is able to keep the drying air temperature at 40°C even in cases where the level of solar radiation received by the collectors changes. Most of the tests were performed at a solar radiation level ranging from 500 to 900?W/m2 and at an air flow of 3 to 5?m/s. The system tested for drying three different crops separately performed 21?h of a total of 27-h drying period at or above the temperature set of 40°C. The thermodynamic analysis of the relationship between solar radiation, air temperature, flow, and the produced energy was performed. The relationship between productivity, energy produced, and set temperature was analyzed using distribution charts. Moreover, an artificial neural network model was used to estimate outlet air temperature from the solar collectors based on air flow, solar radiation, and outside air temperature.  相似文献   

10.
ABSTRACT

The drying of grain in dryers of a crossflow moving bed type was theoretically and experimentally studied. Two different dryer configurations were analyzed, a dryer with central air distribution and another with multiple air duels. Experimental information was obtained in pilot-size dryers. A mathematical model to simulate the process was developed. Hindered drying was accounted for by using the concept of relative drying rate. An adjustable factor, specific to the dryers, was used to account for the uncertainties of the contact area and the transfer coefficients encountered in the literature. Agreement between experimental results and simulations was fairly good. Simulations showed that distance between inlet air and outlet devices, air to solid flow ratio and dryer height to cross section ratio have great influence on the process. The mathematical model may be a useful tool for process exploration and optimization of this type of dryers.  相似文献   

11.
《Drying Technology》2013,31(3):569-586
ABSTRACT

In this work we suggest the dynamic modeling of a spray dryer considered as a series of well-stirred dryers. That is, a series of dryers in which the output variables are equal to the state variables. The state equations were obtained from the heat and water mass balances in product and air. Additionally, heat and water mass balances in interface jointly with water equilibrium relation between product and air were considered. A pilot spray dryer was modeled assuming one, two, five and 20 well stirred steps. Low-fat milk with 10–20% of solids was dried at different inlet air temperatures (120–160°C), air flow rate of 0.19 kg dry air s?1 and different feed rates (1.4 ? 4.2 × 10?4 kg dry solids s?1). Stationary result showed that the model predicts the experimental air outlet temperature, at different inlet conditions with a maximum deviation of 6°C. The dynamic simulation reproduce the experimental one with moderate accuracy. Experimental dynamic showed that the pilot plant spray dryer has a well-stirred process behavior. The model represents a method for estimate outlet product moisture as function of the outlet air temperature. This has application for automatic control because there is not an easy way to measure on-line measure the outlet product moisture content.  相似文献   

12.
13.
An even span solar greenhouse dryer was built and applied to dry Java tea (Orthosiphon aristatus) and Sabah snake grass (Clinacanthus nutans Lindau). Findings showed that the solar greenhouse dryer performs satisfactorily during clear weather except at nighttime and rainy day due to product rehydration which is heavily influenced by high relative humidity from ambient air. Integrating of heat pump into the solar greenhouse dryer has successfully reduced the room relative humidity by 10–15%. Also, heat pump has mitigated the product rehydration issue by maintaining room relative humidity at maximum of 65% throughout the drying period. The drying rate of Java tea was improved three to fourfold, i.e., from 0.004–0.008 to 0.018–0.025?g H2O/g DM min, whereas 10% of drying time was saved for both Java tea leaf and Sabah snake grass leaf with the assistance of heat pump system. Meanwhile, the supply of dry air from the heat pump system with a magnitude of 0.25–0.50?m/s helps in enhancing the drying rate of the herbs as well as minimizing the nonuniformity of drying temperature and relative humidity inside the solar greenhouse dryer.  相似文献   

14.
Drying is a highly energy-demanding operation, traditionally taken up from fossil fuels, with high-operating costs and CO2 emissions. Solar energy has great potential as an alternative energy source. However, variations in solar radiation require the use of additional energy sources, to keep a continuous drying process. An option is to accumulate solar energy using phase-change materials. In the present work, an advanced multivariable control system using fuzzy logic was implemented and applied to a solar dryer equipped with thermal energy storage system, with a capacity of 25?kg of agro-products. Two control systems were implemented: the first considering the ambient temperature and solar radiation as input variables, where the manipulated variables were the opening level of the solar panel and energy solar accumulator valves. The controlled variable in the second control system was the relative humidity content at the outlet of the drying chamber, and the manipulated variable was the opening of the air recirculation valve. The opening of the valves in both control systems was performed properly with variations of solar radiation, ambient temperature, and air moisture during the dehydration of mushrooms, plumbs, and peaches. Solar drying, together with a proper control system, reached 80% energy savings compared to conventional drying.  相似文献   

15.
《Drying Technology》2013,31(5):1027-1041
Abstract

This article presents experimental results for spouted bed drying of sawdust, carried out in a full-scale as well as in a laboratory-scale dryer using air as well as steam as drying media. The aim is to present design parameters for a spouted-bed sawdust dryer that can be used by the industry in designing full-scale dryers. A hydrodynamically stable spouted jet spouted bed was obtained. The heat transfer characteristics of the bed were represented in terms of a volumetric heat transfer coefficient (VHC). When sawdust is dried in a spouted bed, the mean VHC is increasing up to fiber saturation level (20–25% wb) from 40 to 110 W/m3 K. The VHC decreases with the residence time and with an increased static bed height. Gas temperature profiles are also presented for the bottom part of the drying chamber.  相似文献   

16.
ABSTRACT

This paper presents the application of a design method for a partial solar heating system of polyvalent modular dryers called “GJ-ABAQUE” to the drying of thick layers of grains.

This method is based on the use of charts or polynomial correlations. In the actual case where the drying air is not recycled, we only need one chart which allows one to determine the fraction of the monthly heating load supply by solar energy as a function of two dimensionless parameters. The latter implies the use of monthly average radiation data, the collector surface and estimates of drying loads.

The “GJ-ABAQUE” method was applied for drying 777 kg of corn, corresponding to 1 m3 of fresh product, in a thick layer in each modular dryer.  相似文献   

17.
ABSTRACT

Long- and medium-grain rice were dried in a commercial multi-stage concurrent-flow dryer. Drying air temperatures varied fran 82°C to 177°C. Over six points of moisture were removed in one dryer pass without affecting the rice head-yield. Energy consumption of the dryers was half that of conventional rice dryers. Simulation played a major role in the design of the mUlti-stage concurrent-flow rice dryers.  相似文献   

18.
The design of so-called “ventilated tunnel solar dryers" is presented in this work under theoretical and practical aspects. These dryers consist in a tunnel with a black floor and a plastic top, ventilated with fans supplied by a photovoltaic module. Along this tunnel, the air first passes through a heating part, which is product free and where the air is heated due to greenhouse effect. It then enters the second part of the dryer, the drying part, where the products to dry are spread. A rational and general design procedure based on the solving of energy and mass balance equations is developed and followed. This procedure allows designing the ventilation system and calculating the lengths of the heating and the drying parts of a dryer according to a scope statement and to design conditions insuring an efficient and homogeneous drying. Two dryers were designed, built and operated, in the frame of two development aid programs, in Cambodia and in Uganda. The fieldwork highlighted the importance of practical building and operating aspects, reported in the present paper, and of including people of the local communities in these programs. Results of field drying experiments are shown and demonstrate the validity of the design procedure. In particular, the validity of the energy balance equations at the basis of the procedure is demonstrated.  相似文献   

19.
Using available correlations for heat transfer, a comparative analysis of drying rates in CO2 and in air was performed for several basic types of dryers. Higher heat transfer rates were found for dryers with active hydrodynamics, which translates into shorter drying time for materials dried in the first drying period. These results were validated by experiments on drying wheat kernels fluidized by air and by CO2. Shorter drying times by about 20% were confirmed for CO2, which offers energy savings of about 3% of the heat input to the dryer. Additional energy savings of 4% of the heat load can be expected for drying at temperatures below 100°C because of the lower wet-bulb temperature for CO2 than that for air. The potential for CO2 abatement was evaluated based on a case study for drying of distillers' spent grain.  相似文献   

20.
A modular solar cabinet dryer equipped with an air collector including a drying chamber with different tray arrangements was developed to determine moisture changes in different sizes and forms (slices and cubes) of apple and carrot pieces and to carry out serial measurements of temperatures, solar radiation, and air humidity distributions during the drying process. The initial and final moisture contents (w.b.) of fresh products were 88 and 26% for apple and 71 and 13% for carrot with initial weights of 1.56 and 3 kg, respectively. The results revealed that the temperature inside the chamber was strongly negatively correlated with air humidity (R2 = 0.91) and that the length of the drying period was influenced by the weather conditions, as the cloudy weather retarded drying of carrots. It was possible to reach an air drying temperature over 41°C with a daily total solar energy incident on the collector's surface of 857.2 kJ/(m2 day) for apples and 753.20 kJ/(m2 day) for carrots. The analysis of energy requirements to remove moisture from apples and carrots during the total drying period showed values of 3300.19 and 7428.28 kJ/kg, respectively. The amount of air to remove water from the samples was also determined as 126.93 m3 for apples and 928.56 m3 for carrots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号