首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
空气式静电放电的实验分析   总被引:4,自引:4,他引:0  
针对国际电工委员会标准IEC 61000-4-2静电放电抗扰度试验方法存在的问题,对空气式静电放电进行实验研究.利用新型静电放电(ESD)模拟测试系统,在较宽范围的电压电平下,用数字存储示波器对放电电流的上升时间、峰值、自制金属半圆环天线上的耦合电压峰一峰值进行测量.测量结果的分析表明:不同空气湿度下的ESD特性存在着...  相似文献   

2.
空气静电放电若干特性分析   总被引:5,自引:5,他引:0  
针对国际电工委员会标准IEC61000-4-2静电放电抗扰度试验方法存在的问题,对影响空气静电放电的一个重要因素-电弧结构进行了讨论。在此基础上,利用新研制的静电放电模拟测试系统,分析了接近速度和放电电压对放电电流峰值、上升时间、感应电压峰—峰值以及试验结果重复性的影响。试验结果表明:放电电压一定时,放电电流峰值、感应电压峰-峰值随接近速度的增大而增大;上升时间随接近速度的增大而减小;在一定的接近速度和放电电压下,空气静电放电也可以实现较好的重复性。这些规律性的试验结果,为建立静电放电抗扰度试验新方法提供了依据。  相似文献   

3.
静电放电(electrostatic discharge,ESD)抗扰度试验作为电磁兼容(EMC)试验的一项重要内容,其执行标准IEC 61000-4-2还存在诸多问题,尤其是空气式ESD的重复性问题。为此,基于动能-势能转换原理,采用导轨带动电极运动结构和步进电机装置,用近似单摆结构的试验方法,设计和研制了2种新的ESD抗扰度试验平台,实现了空气式ESD抗扰度试验中对放电电极接近速度的准确控制。利用这2种ESD抗扰度试验平台对空气式ESD的重复性进行了研究。试验结果表明,ESD参数如放电电流峰值、接近速度和放电电压具有很好的规律性,并且在一定的放电电压和接近速度下,空气式ESD也可以具有较好的重复性。在相同放电电压和接近速度下,利用第2种ESD抗扰度试验平台得到的放电电流峰值和上升时间的变异系数均小于利用第1种ESD抗扰度试验平台得到的放电电流峰值和上升时间的变异系数,因此第2种单摆式ESD抗扰度试验平台的重复性要好于第1种ESD抗扰度试验平台的重复性。  相似文献   

4.
空气间隙固定和连续变化时的空气静电放电事件研究   总被引:3,自引:2,他引:1  
为得到2种状态下空气静电放电(ESD)辐射电磁场与放电间隙间距、放电电压和电极接近速度之间的关系,在-30~30kV的宽电压范围和多种温湿度条件下,通过实验测量记录了两种状态的空气ESD事件;给出了空气ESD事件的解释;提出了空气ESD存在“增长间隙区”、“跌落间隙区”、“平坦间隙区”和“零放电间隙区”4个放电间隙区。...  相似文献   

5.
电极结构对介质阻挡放电参数的影响研究   总被引:1,自引:1,他引:0  
为了优化介质阻挡放电(DBD)反应器设计,提高放电效率,提出一种针阵列芒刺状棒电极结构。利用电压-电荷Lissajous图形法,研究了光滑铜棒、螺纹铜棒和针阵列芒刺状铜棒电极等反应器电极结构对DBD放电参数的影响。实验结果表明,随着外加激励电压的升高,5种电极结构的放电功率P和平均放电电流Im及周期传输电荷量Q都随之增大。相同激励电压下,针阵列芒刺状棒电极的P、Im、Q值最大。针阵列芒刺状铜棒电极的气隙等效电容Cg随电压的升高呈震荡形式增加,而光滑电极和螺纹电极的Cg随电压的升高呈减小的趋势。研究结果表明,针阵列芒刺状铜棒电极更有利于挥发性有机物的去除,针间距越小,能量利用率越高。  相似文献   

6.
为改善空气放电模拟方法,用静电放电模拟测试装置研究了IEC标准规定的空气式静电放电的放电特性。通过手动方式使充电后的放电电极快速靠近电流靶获得空气静电放电事件,放电电压具有2~20 kV较宽范围的电压电平和正负电压极性。利用Agilent数字存储示波器测量了空气静电放电放电电流的上升时间、峰值以及耦合到自制的金属半圆环上的峰-峰值电压,并记录了放电电流和耦合电压的波形。通过分析和比较测量结果研究了测量参数随放电电平的变化趋势。空气放电电流的特性与静电放电抗扰度试验标准IEC 61000-4-2对接触式放电的规定类似,耦合电压与放电电压之间没有直接的相关性。实验表明在一定电压范围、电极速度可控时可能获得空气放电的重复性。  相似文献   

7.
为了研究静电喷涂过程中油液的电晕荷电特性和雾化现象,利用静电涂油机为试验平台,分析了静电涂油机中梁板电极的电晕放电过程,得到了静电涂油机电晕放电的起晕电压;同时依据静电学原理,给出了液滴在高压静电场中的电晕荷电量和液滴破碎的理论临界场强;结合静电涂油机喷涂试验,从宏观和微观的角度分析了油液的雾化过程。研究表明,随着电压的增大,射流长度总的趋势是减小的,但在不同区域,电压对射流长度的作用不同;雾化角随电压增加而先增大到一定程度后开始减小,最后逐渐趋于稳定;电晕荷电电流随电压的增大而变大;雾滴粒径随电压的增加而减小,当电压在65kV左右时,粒径较小且分布最为均匀,此时油液达到较好的雾化效果。  相似文献   

8.
为提高电晕放电的能量密度和放电稳定性,提出了针阵列电极结构的双极电晕放电方式并研究了多针电极结构双极电晕放电的伏安特性。实验得出放电电流I随针尖半径a和电极间距d的增大而减小,随相邻针尖间距s的增大而增大,但当s≥40 mm时,相邻针尖的相互作用已很小,I几乎不变;d对火花击穿电压的影响较大,a对其的影响较小。由于电极结构的对称性,高压电极的极性对放电无明显的影响,正负电晕放电的伏安曲线和火花击穿电压均较为接近。将多针电极双极电晕放电电流I等效成电极间距为d/2的多针对板正、负电晕放电电流I1和I2相加,分析了I>I1+I2的原因,并推知其电离区内电子密度也有相应规律。  相似文献   

9.
笔者研究了平行平板电极、柱-板电极、斜板-平板电极三种电极结构DBD的放电特性,通过测量电压-电流波形图及放电发光图比较了他们的区别,并从放电机理角度对实验结果进行了讨论。结果发现:柱-板电极DBD中,随柱电极外径的增大,正负半周起始放电电压增大。  相似文献   

10.
静电放电电流表示方法的比较   总被引:2,自引:1,他引:1  
梁振光 《高电压技术》2009,35(10):2470-2474
为了提供静电放电仿真研究中所需的放电电流,对几种常用的静电放电电流表示方法进行了分析。重点讨论了使用电路模型计算静电放电电流的方法,列举了4种电路模型;讨论了用解微分方程法和复频域法推导静电放电电流解析表达式的方法;根据设定的电路参数,计算并绘出其电流曲线;通过分析、比较,显示不同电路结构模型的静电放电电流呈现出各自的特点,其中,6元件模型的电流呈双峰波形,9元件模型则进一步体现出电流振荡的特点。为此,在选择电路模型时,应根据静电放电研究所关注的内容确定适当的电路结构。  相似文献   

11.
基于圆锥管状电极的高压静电场对雾滴荷电的影响   总被引:1,自引:0,他引:1  
静电喷头电极产生的高压静电场对雾滴荷电及沉积效果有重要影响,为此,根据航空静电喷雾的特点改进原有圆柱管状电极型式为圆锥管状电极。借助Ansoft Maxwell软件和试验测试方法对锥形管状电极的空间电场强度进行分析。建立了基于圆锥管状电极静电喷头的雾滴荷电效果测试系统,开展了模拟飞行条件下的充电电压对雾滴荷质比及沉积分布的影响效果试验研究。结果显示:电极空间电场模拟结果与测试计算结果基本符合,确定靠近锥形电极20~70 mm范围为最佳荷电区域。雾滴荷质比随着充电电压的增加有增加的趋势,与距离喷头的轴向位置关系不大,当电压达到10 kV时雾滴荷电饱和,并获得了最大荷质比2.13 mC/kg。相比0 kV条件,10 kV电压条件下的雾滴在中性靶标侧面、下面和背面的沉积量有明显提高,分别平均提高了18、19、18 cm-2;雾滴在正极靶标的沉积量明显多于负极和中性靶标,在正极靶标背面上的平均沉积量相比其正面和侧面增加的更多,达到86%。  相似文献   

12.
管-管和管-板电极介质阻挡放电特性研究   总被引:3,自引:0,他引:3  
电极结构对介质阻挡放电(DBD)的放电特性有重要影响,研究和比较不同电极结构DBD的放电特性,对优化DBD反应器结构和提高放电效率具有重要意义。笔者实验研究和比较了大气压空气中管-管电极和管-板电极DBD的放电特性,比较了它们电压电流波形图、李萨育图形以及发光图像的区别,研究了不同电压幅值下放电参量的变化,并从放电机理上对实验结果给出合理解释。结果表明:管-板电极DBD的电气特性和发光特性与管-板电极DBD有明显的区别,相对于管-管电极DBD,管-板电极DBD的放电更稳定,放电细丝分布更均匀;随着外加电压幅值的增加,两种电极结构DBD的放电持续时间、电流幅值、放电功率和传输电荷量都增加,在相同外加电压幅值下,管-板电极DBD的各参量均大于管-管电极DBD。  相似文献   

13.
智能电器监控单元静电放电敏感性的实验研究   总被引:2,自引:0,他引:2  
为研究智能电器监控单元的静电放电敏感性,利用静电放电发生器对设备机壳放电进行了实验研究。根据静电放电干扰的耦合途径以及智能电器监控单元的实际工作情况,选取电源模块直流侧电压作为研究智能电器监控单元的静电放电敏感性的对象,通过频谱分析得出直流侧对地电压和静电放电电压间的关系。装置采取屏蔽、接地和滤波等抗干扰措施时其静电放电敏感性降低,分析直流侧电压发生的相应变化得出结论:静电放电时,智能电器监控单元直流侧对地电压与装置的静电放电敏感性有一定的相关性。  相似文献   

14.
指出静电放电抗扰度试验是电能表电磁兼容试验中重要的项目之一,而电能表静电放电抗扰度试验的测量不确定度判据在国标中并没有具体的要求。通过某种型号的电能表的测量结果,从实际出发,提出了静电放电抗扰度试验的测量原理,并建立了静电放电抗扰度试验的数学模型,提出了基于该数学模型的静电放电抗扰度试验的测量不确定度的分析计算,对于静电放电抗扰度试验是否通过不确定度判据的深入研究具有非常重要的意义。  相似文献   

15.
为了满足高压脉冲液相放电废水处理技术需要,研制一套消弧触发放电开关装置,在绝缘转子的圆周上均布转动触头,与绝缘定子上的弹力触头,实现通-断接触,形成开关.当转速调到1000r/min时,脉冲频率为200Hz,装置运行平稳、触点通-断灵活、接触可靠;电压加载到40kV时,单触发开关旋转正常,未听到触点起弧的声音,高压脉冲在液相中放电正常,放电火花明亮、有力,实验证明是一款性能优良的触发开关  相似文献   

16.
不同电极结构介质阻挡放电特性比较   总被引:1,自引:0,他引:1  
采用电压-电流波形测量、发光图像拍摄、光谱分析等手段研究大气压空气中刃-板电极、针-板电极和柱-板电极结构介质阻挡放电(DBD)的放电特性,并研究电压幅值、电源频率及气隙距离对放电功率和分子振动温度等放电参量的影响,结合放电理论对不同电极结构DBD的特性进行分析。结果表明:3种电极结构DBD的电压电流波形、Lissajous图形以及光谱谱线体现出不同的特点,相同条件下柱-板电极结构DBD放电强烈,消耗放电功率多,粒子谱线强度高,放电电流可达200 mA。电极布置差异导致电场不均匀系数的不同是放电特性出现差异的主要原因。随着电压幅值、电源频率的增加和气隙距离的减小,3种电极结构放电增强,放电功率和分子振动温度增加。  相似文献   

17.
固定翼飞机静电分布及着陆泄放研究   总被引:2,自引:0,他引:2  
易鸣  王春 《高电压技术》2007,33(7):115-118
为了研究固定翼飞机静电分布特性及着陆时静电泄放,在论述了固定翼飞机空中飞行时的静电产生机理、飞机静电的消散形式后用矩量法分别求取了飞机空中飞行、停靠地面时的电荷分布;获得了飞机着陆时的放电时间常数及某型飞机2种不同状态下的飞机电容:空中飞行时400pF,停靠地面时1.3nF。电荷分布计算结果与理论分析吻合,电容值与美军标Mil-Std-464给定数值一致,说明计算正确。最后根据静电放电的脉冲特性,建立了着陆时的静电放电的传输线电路模型,通过分析模型,给出了着陆时高阻的安全放置位置。  相似文献   

18.
针对目前电除尘技术尚属于经验工程的学科,由设计命中率决定的电除尘器技术性能难以达到烟气排放的新标准。为提高电除尘器的效率,根据电离连续方程及带电粒子运动方程,模拟电除尘技术中直流高电压电晕放电的物理过程,进行了大气压电晕电场中的带电粒子输运特性实验。当电晕放电电场强度为38.4 Td,粒子动量由72 ygm/s增加到1195 ygm/s时,负离子输运项(控制电离区域离子在输运过程中引起浓度变化的速率)则相应地由5.4×108/(cm3.s)升高到8.0×1010/(cm3.s),增加了2个数量级。结果表明可通过提高粒子动量解决现代电除尘器的离子浓度。  相似文献   

19.
静电放电对无绳电话充电接触失效的影响   总被引:1,自引:0,他引:1  
唐振方  叶勤  刘欣  彭舒 《低压电器》2006,(3):15-17,50
进行高压静电条件下的加速失效模拟实验,测量无绳电话充电接触失效循环寿命,证实人体静电放电对充电电极寿命的影响。通过扫描电子显微镜观察触头显微形态和进行表面元素成分的半定量分析,从理论上研究充电接触失效的微观过程和作用机理。研究结论对合理选择电极材料、进行表面处理和防护以及改进电极组件设计具有参考意义。  相似文献   

20.
静电放电损伤自修复数字电路模型的建立与优化   总被引:2,自引:0,他引:2  
为了使数字电路在产生故障失效后实现功能自动恢复,提高电路可靠性,基于演化硬件(EHW)原理建立了自修复数字电路模型,该模型主要包括微处理器和重配置电路2个部分。利用自修复数字电路模型实现无刷直流电机控制系统中的换相电路,并对换相电路进行了故障注入修复实验。深入分析了自修复数字电路模型对电路演化修复的影响,通过引入关键函数对自修复数字电路模型进行了改进。实验结果表明,当注入故障单元数小于总单元数的50%时,改进后的自修复数字电路模型修复率达到100%。因此,该模型能够对部分故障进行成功修复,改进的自修复数字电路模型降低了电路生成时间,提高了电路修复概率和速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号