首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A three-point bending (rectangular bar) specimen was made from sintered Al2O3/SiC composite ceramics and commercial Al2O3 material, upon which a semi-elliptical surface crack of 100 μm in diameter (aspect ratio ≒ 0.9) was introduced through an indentation method. The following materials were subjected to the following crack-healing treatment: Al2O3/SiC composite ceramics (under 1573 K temperature, 1 h crack-healing time) and monolithic Al2O3 (under 1373 K or 1723 K temperature, 1 h crack-healing time) designed to heal the crack samples.  相似文献   

2.
Dehydrogenation of organic chemical hydrides has been improved by reconstructing the catalyst in the form of hierarchical porous structure nanocatalyst, in which the economical Ni was adopted as catalytic component and nano Al2O3–TiO2 hybrid composite as support. The Al2O3–TiO2 composite was prepared by spontaneous self-assembly of nano Al2O3 and TiO2 aggregates by hydrolysis of tetra-n-butyl-titanate under continuous agitation. The multi-scaled distribution of Al2O3–TiO2 aggregates with hierarchy could be observed in dynamic light scattering spectrometer. The aggregates are comprised of nano-sized γ-Al2O3 and anatase TiO2 crystallites with sizes of about 5 and 7 nm, respectively. The surface modulation by TiO2 could be verified in FTIR Spectra. The migration of Ti species and crystallite growth were hindered by the Al2O3 skeleton and the hierarchical porous structure was sustained during the thermal related process. The multi-scaled distributed pores were confirmed by both TEM analysis and N2 adsorption results. The results of dehydrogenation experiments showed that the hierarchical porous structure nano Ni/Al2O3–TiO2 exhibited superior catalytic performance to Ni/Al2O3 with the optimum conversion of 99.9% at 400 °C, while the catalyst of Ni/Al2O3 exhibited only 16.5% under the same condition.  相似文献   

3.
Hydrogen production via steam reforming of methanol has been studied over a series of CuO/ZnO/Al2O3 catalysts synthesized by the combustion method using urea as fuel. Furthermore, the effect of alumina loading on the properties of the catalyst has been investigated. XRD analysis illustrated the crystallinity of the Cu and Zn oxides decreases by enhancing alumina loading. BET showed the surface area improvement and FESEM images revealed lower size distribution by increasing the amount of alumina. EDX results gave approximately the same metal oxide compositions of primary gel for the surface of the nanocatalysts. Catalytic performance tests showed the well practicability of catalysts synthesized by the combustion method for steam reforming of methanol process. Alumina addition to the CuO/ZnO catalyst caused the higher methanol conversion and the lower CO generation. Among different compositions the sample with molar component of CuO/ZnO/Al2O3 = 4/4/2.5 showed the best performance which without CO generation at 240 °C its methanol conversion decreased from 90 to 60% after 90 h.  相似文献   

4.
A novel surface modification method was carried out by reactive dc magnetron sputtering to fabricate TiO2 electrodes coated with Al2O3 for improving the performance of dye-sensitized solar cells (DSSCs). The Al2O3-coated TiO2 electrodes had been characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–vis spectrophotometer, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The study results revealed that the modification to TiO2 increases dye absorption amount, reduces trap sites on TiO2, and suppresses interfacial recombination. The impact of sputtering time on photoelectric performance of DSSCs was investigated. Sputtering Al2O3 for 4 min on 5-μm thick TiO2 greatly improves all cell parameters, resulting in enhancing the conversion efficiency from 3.93% to 5.91%. Further increasing sputtering time decreases conversion efficiency.  相似文献   

5.
In this work, based on first principles density functional theory, we have investigated the interaction of SO3 molecule on three different substrates; (i) clean Al2O3 surface (0001) (ii) an isolated Ag6 cluster and (iii) Ag6 clusters deposited on the Al2O3 surface. All calculations were carried out using the plane wave based pseudopotential method under the framework of density functional theory. For the clean Al2O3 surface, the SO3 molecule was adsorbed in parallel orientation on the surface resulting in an elongation of the S–O bond from 1.44 to 1.52 Å with interaction energy of 1.67 eV. In contrast, the interaction of SO3 with Ag6 was found to be weak with 0.4 eV interaction energy and 1.47 Å as the largest S–O bond length. Remarkably, when SO3 molecule interacted with Ag6 cluster deposited on the Al2O3 support, the binding was found to be higher than both Al2O3 and Ag6 clusters in their isolated state. In particular, upon adsorption of SO3 on Ag6/@Al2O3, the S–O bond length was found to increases from 1.44 to 1.64 Å and the interaction energy was estimated to be 2.00 eV. As the bond elongation bears the signature of bond weakening, a comparison of the above three results clearly suggests that the dissociation barrier of S–O bond on the Ag6@Al2O3 support will be significantly lower than that on the isolated Ag6 or Al2O3 surface. The nature of chemical interaction of SO3 on these three systems has been discussed based on the electronic density of states analysis.  相似文献   

6.
A series of ZnO–Al2O3 catalysts with various ZnO/(ZnO + Al2O3) molar ratios have been developed for hydrogen production by dimethyl ether (DME) steam reforming within microchannel reactor. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction and temperature programmed desorption of NH3. It was found that the catalytic activity was strongly dependent on the catalyst composition. The overall DME reforming rate was maximized over the catalyst with ZnO/(ZnO + Al2O3) molar ratio of 0.4, and the highest H2 space time yield was 315 mol h−1·kgcat−1 at 460 °C. A bi-functional mechanism involving catalytic active site coupling has been proposed to account for the phenomena observed. An optimized bi-functional DME reforming catalyst should accommodate the acid sites and methanol steam reforming sites with a proper balance to promote DME steam reforming, whereas all undesired reactions should be impeded without sacrificing activity. This work suggests that an appropriate catalyst composition is mandatory for preparing good-performance and inexpensive ZnO–Al2O3 catalysts for the sustainable conversion of DME into H2-rich reformate.  相似文献   

7.
Alumina (Al2O3) shell formation on TiO2 core nanoparticles by atomic layer deposition (ALD) is studied to suppress the recombination of charge carriers generated in a dye-sensitized solar cell (DSSC). It is relatively easy to control the shell thickness using the ALD method by controlling the number of cycles. An optimum thickness can be identified, which allows tunneling of the forward current while suppressing recombination. High-resolution TEM measurements show that a uniform Al2O3 shell is formed around the TiO2 core particles and elemental mapping of the porous TiO2 layer reveals that the Al2O3 distribution is uniform throughout the layer. The amount of dye absorption is increased with increase in the shell thickness but electrochemical impedance spectroscopic (EIS) measurement shows a drastic increase in the resistance. With an optimum Al2O3 thickness of 2 nm deposited by ALD, a 35% improvement in the cell efficiency (from 6.2 to 8.4%) is achieved.  相似文献   

8.
To investigate the mechanisms of the improvement on separation efficiency of photogenerated carriers, a Fe2O3/SrTiO3 heterojunction semiconductor with an improved separation efficiency was successfully prepared. The heterojunction semiconductor was characterized with X-ray diffraction (XRD), UV–vis absorption spectrum, scanning electron microscope (SEM) and surface photovoltage (SPV) spectroscopy. The energy band diagrams of Fe2O3 and SrTiO3 were determined with X-ray photoelectron spectroscopy (XPS), based on which the conduction band offset (CBO) between Fe2O3 and SrTiO3 was quantified to be 1.26 ± 0.03 eV. The recombination of photogenerated carriers was investigated with photoluminescence (PL) spectrum, which indicates that the formation of Fe2O3/SrTiO3 decreases the recombination. Thus the improved separation efficiency is mainly due to the energy difference between the conduction band edges of Fe2O3 and SrTiO3, and the decreased electron-hole recombination for Fe2O3/SrTiO3.  相似文献   

9.
Al2O3 was synthesized using the sol-gel process with aluminum isopropoxide as the precursor and primary distilled water as the solvent. Nickel and cobalt metal powders were used to increase the strength of the membranes. The Al2O3-based membranes were prepared using HPS following a mechanical alloying process. The phase transformation, thermal evolution, surface and cross-section morphology of Al2O3 and Al2O3-based membranes were characterized by XRD, TG-DTA and FE-SEM. The hydrogen permeation of Al2O3-based membranes was examined at 300–473 K under increasing pressure. Hydrogen permeation flux through an Al2O3-20wt%Co membrane was obtained to 2.36 mol m−2 s−1. Reaction enthalpy was calculated to 4.5 kJ/mol using a Van’t Hoff’s plot.  相似文献   

10.
The effect of CeO2 loading amount of Ru/CeO2/Al2O3 on CO2 methanation activity and CH4 selectivity was studied. The CO2 reaction rate was increased by adding CeO2 to Ru/Al2O3, and the order of CO2 reaction rate at 250 °C is Ru/30%CeO2/Al2O3 > Ru/60%CeO2/Al2O3 > Ru/CeO2 > Ru/Al2O3. With a decrease in CeO2 loading of Ru/CeO2/Al2O3 from 98% to 30%, partial reduction of CeO2 surface was promoted and the specific surface area was enlarged. Furthermore, it was observed using FTIR technique that intermediates of CO2 methanation, such as formate and carbonate species, reacted with H2 faster over Ru/30%CeO2/Al2O3 and Ru/CeO2 than over Ru/Al2O3. These could result in the high CO2 reaction rate over CeO2-containing catalysts. As for the selectivity to CH4, Ru/30%CeO2/Al2O3 exhibited high CH4 selectivity compared with Ru/CeO2, due to prompt CO conversion into CH4 over Ru/30%CeO2/Al2O3.  相似文献   

11.
Catalytically active surface of small nickel (min 99 wt%) plates for steam methane reforming was enhanced by successive temperature programmed oxidation−reduction (TPO−TPR) pretreatment and combined physical vapor deposition of Pt and Al2O3. The effect of annealing time, temperature, order and number of coatings on the catalytic activity was investigated by means of a pulse technique at the reaction temperature of 760 °C. The most active and stable surface phases resulted after the successively deposited layers of Pt, Al2O3, and Pt had been annealed for 12 h onto 2-cycle TPO−TPR pretreated nickel plate at the temperature of 700 °C in a circulating atmosphere of N2. The durability performance of the so-prepared surface phases on a specifically structured plate catalyst element (diameter 43 mm and length 42 mm) was tested in a tubular reactor for some 70 h in temperature range 500−650 °C. Deactivation was mainly caused by carbon surface deposition.  相似文献   

12.
A highly selective hydrogen (H2) sensor has been successfully developed by using an yttria-stabilized zirconia (YSZ)-based mixed-potential-type sensor utilizing SnO2 (+30 wt.% YSZ) sensing electrode (SE) with an intermediate Al2O3 barrier layer which was coated with a catalyst layer of Cr2O3. The sensor utilizing SnO2 (+30 wt.% YSZ)-SE was found to be capable of detecting H2 and propene (C3H6) sensitively at 550 °C. In order to enhance the selectivity towards H2, a selective C3H6 oxidation catalyst was employed to minimize unwanted responses caused by interfering gases. Among the examined metal oxides, Cr2O3 facilitated the selective oxidation of C3H6. However, the addition or lamination of Cr2O3 to SnO2 (+30 wt.% YSZ)-SE was found to diminish the sensing responses to all examined gases. Therefore, an intermediate layer of Al2O3 was sandwiched between the SE layer and the catalyst layer to prevent the penetration of Cr2O3 particles into the SE layer. The sensor using SnO2 (+30 wt.% YSZ)-SE coated with a catalyst layer of Cr2O3 as well as an intermediate layer of Al2O3 exhibited a sensitive response toward H2, with only minor responses toward other examined gases at 550 °C under humid conditions (21 vol.% O2 and 1.35 vol.% H2O in N2 balance). A linear relationship was observed between sensitivity and H2 concentration in the range of 20–800 ppm on a logarithmic scale. The results of sensing performance evaluation and polarization curve measurements indicate that the sensing mechanism is based on the mixed-potential model.  相似文献   

13.
The promotion effects of Ca on catalytic performance of Ca-doped Pt/Al2O3 catalyst were investigated by varying Ca content and impregnation orders. The Ca-doped Pt/Al2O3 catalyst with atomic rate Ca/Pt = 5 exhibited the highest catalytic activity and stability. Detailed analyses show that low Ca content (Ca/Pt < 5) could not efficiently promote hydrogen spillover from Pt-Al interface to the support and reduce the strong acid sites on the support. However, high Ca content (Ca/Pt > 5) decreases the initial activity due to the coverage of Ca on the support and increases the amount of Pt strongly interacting with Ca, which inhibits Pt reduction. Furthermore, the Ca promotion effect is more pronounced when Ca is added prior to Pt due to surface modification of Ca on Al2O3 support. This modified catalyst possesses more dispersed Pt, lower acidity and larger amount of spilled-over hydrogen.  相似文献   

14.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

15.
LiCoO2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO3:Al2O3) by an in situ sol–gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO3:Al2O3 compound and the in situ sol–gel process synthesized 3LaAlO3:Al2O3-coated LiCoO2 was a single-phase hexagonal α-NaFeO2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO3:Al2O3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO3:Al2O3-coated LiCoO2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO2 cathode material when it was charged at 4.4 V.  相似文献   

16.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

17.
Alumina/silicon carbide (Al2O3/SiC) composite ceramics were sintered and subjected to three-point bending. A semicircular surface crack 50–320 µm in diameter was made on each sample. Crack-healing behavior was systematically studied, as a function of cyclic-fatigue strength, crack-healing temperature, healing time, and crack size, and the bending strength of the crack-healed sample from room temperature to 1500 °C were investigated. Four main conclusions were drawn from the present study.
(1)
Crack-healed Al2O3/SiC sample exhibited very high cyclic-fatigue limit of 700 MPa.  相似文献   

18.
Activated carbon (AC) supported Fe–Al2O3 catalysts were prepared by impregnation method and used for catalytic methane decomposition to hydrogen. The XRD and H2-TPR results showed that ferric nitrate on AC support was directly reduced to Fe metal by the reducibility of carbon at 870 °C. The loading amount and Fe/Al2O3 weight ratio affect the textural properties and catalytic methane decomposition. The surface area and pore volume of the catalyst decrease with the loading of Fe and Al2O3. Mesopores with size of about 4.5 nm can be formed at the loading of 20–60% and promote the catalytic activity and stability. The mesopores formation is thought that Fe accelerates burning off of carbon wall and enlarging pore sizes during the pretreatment. When the Fe/Al2O3 ratio is 16/24 to 24/16 at the loading of 40%, the resultant catalysts show narrow mesopore distributions and relative high methane conversion. Al2O3 as the promoter can improve catalytic activity and shorten transitional period of AC supported Fe catalyst.  相似文献   

19.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

20.
Three series of binary oxide systems B2O3/Al2O3 were prepared and the effect of alumina on dispersion of boron (B2O3) component was investigated. The aim of the study was to achieve a maximum dispersion of B2O3 in the Al2O3 a gel matrix that would lead to increased sorption capacity on boron oxide. Many attempts were made to establish the preparation conditions that would lead to a maximum dispersion of B2O3 in the Al2O3 gel matrix needed to increase the hydrogen sorption capacity on boron oxide. The systems were characterized by X-ray diffraction, SEM, TEM and low temperature nitrogen adsorption. Hydrogen adsorption was tested in the volumetric system.Results of the study showed that the amount of hydrogen adsorbed on B2O3 depended not only on the surface area of the system but also on the separation of B2O3 domains in Al2O3 gel network. Irrespective of the method of synthesis of the binary oxide system, the dispersion of B2O3 phase reflected in the amount of hydrogen adsorbed was the highest for the systems of the lowest B/Al molar ratios studied, i.e. for B/Al = 0.25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号