首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Intracellular recordings were made from the output neurons (mitral and tufted cells) of the rat olfactory bulb during electrical orthodromic stimulation of the olfactory nerve layer (ONL) and antidromic stimulation of the lateral olfactory tract and posterior piriform cortex (pPC) to test for physiological differences among the neuron types. Many of these neurons were identified by intracellular injections of biocytin, and others were identified by their pattern of antidromic activation. 2. Both marked and unmarked mitral cells showed large inhibitory postsynaptic potentials (IPSPs) in response to antidromic stimulation of the pPC, whereas tufted cells exhibited small IPSPs in response to pPC stimulation. Tufted cells, however, showed large IPSPs in response to ONL stimulation. In many cases, these tufted cell responses to ONL stimulation were larger than the mitral cell responses. The marked superficial tufted cells, those with basal dendrites in the superficial sublayer of the external plexiform layer (EPL), had the smallest IPSPs in response to pPC stimulation. These data support anatomic observations suggesting that the granule cell populations responsible for the IPSPs may be different for mitral and for superficial tufted cells. 3. The different types of output cells also showed differences in their responses to orthodromic stimulation. Type I mitral cells, which have basal dendrites confined to the deep sublayer of the EPL, were significantly less excitable by ONL stimulation than were the type II mitral cells, which have basal dendrites distributed within the intermediate sublayer of the EPL. Half of the type I mitral cells could not be excited at all by ONL stimulation. Superficial tufted cells showed even greater orthodromic excitability than type II mitral cells, usually responding to ONL stimulation with two or more spikes. 4. The ionic basis of the IPSPs in the superficial tufted cells appeared similar to those described for mitral cells. These IPSPs could be reversed by chloride injection and were associated with increased membrane conductance. 5. For both mitral and tufted cells, the number of ONL electrodes evoking IPSPs was greater than the number evoking spikes. These data suggest a kind of center-surround organization of inputs to these cells from the ONL, although this does not yet imply that the sensory receptive field of these output cells has a center-surround organization. 6. In conclusion, the properties of rat olfactory bulb output cells correlate with the sublayers of the EPL in which their basal dendrites lie.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The expression of nitric oxide synthase (NOS) in the olfactory bulb was compared between two mouse strains, CD-1 and BALB/c, that differ in the connectivity within their olfactory glomeruli, their content of tyrosine hydroxylase, and their response to olfactory deafferentation. Labelled cells were qualitatively and quantitatively analyzed by both immunohistochemistry for NOS and histochemistry for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (ND). Both periglomerular cells and short-axon cells were observed with both techniques employed, and their colocalization in the same neurons demonstrated that ND is a reliable marker for NOS-expressing cells in the mouse olfactory bulb (OB). The histochemical technique differentiates two types of glomeruli: ND-positive and ND-negative. Olfactory glomeruli in the CD-1 strain were about 7% larger than those in the BALB/c animals. While the density of NOS/ND-containing periglomerular cells was similar between both strains studied, more NOS/ND-labelled cells were observed in the ND-positive glomeruli (P = 0.002). Since periglomerular cells in the BALB/c strain do not receive direct olfactory receptors synapses, the present results indicate that such inputs do not regulate the expression of NOS and ND activity in the periglomerular cells. The different densities of NOS/ND-expressing periglomerular cells may indicate that nitric oxide is implicated in a differential modulation of the odor response within both types of chemically distinct glomeruli in the mouse olfactory bulb.  相似文献   

3.
The distribution and morphology of neurocalcin-immunopositive neurons have been studied in the rat accessory olfactory bulb. Different subsets of neurons displaying neurocalcin immunoreactivity were found in the glomerular layer, the external plexiform layer and the internal plexiform layer. The most abundant staining was detected in the glomerular layer where neurocalcin-immunoreactive periglomerular cells and external tufted cells were observed in the lateral glomeruli, whereas the central region of this layer was practically devoid of immunopositive neurons. In the external plexiform layer, medial tufted cells and Van Gehuchten cells displayed neurocalcin immunoreactivity. In the internal plexiform layer, interneurons classified as horizontal cells and vertical cells of Cajal were neurocalcin-immunoreactivity. In the internal plexiform layer, interneurons classified as horizontal cells and vertical cells of Cajal were neurocalcin-immunostained. The staining pattern for neurocalcin in the accessory olfactory bulb showed similarities with the immunostaining described in this brain region for another EF-hand calcium binding protein, calbindin D-28k. However, after double immunohistochemical labeling, colocalization of both proteins in the same neuron was not observed, reflecting a biochemical heterogeneity within morphologically homogeneous neuronal groups.  相似文献   

4.
It is a well-established fact that prolonged odor stimulation leads to marked sensory adaptation. This study demonstrates comparable electrophysiological phenomena occurring at the level of the olfactory receptor and at more central olfactory structures. Recordings of overall receptor response and of olfactory bulb unit responses were made during repeated odor stimulation. During the course of a single, continuous odor presentation response decrements were seen in the EOG (at the olfactory receptors) and were mirrored at the mitral cell layer of the bulb. When brief periods without stimulation were introduced between such odor presentations, receptor responsiveness rebounded to its original level, but mitral cell responses did not. On the basis of this dissociation it is suggested that the pattern of response decrement within the bulb represents a case of stimulus-specific habituation in a simple cortical subsystem and is well worth future investigation as a model of neural plasticity. Surgical disconnection of the olfactory bulb from one or more of its centrifugal inputs results in hyperactive, hyperresponsive mitral cells, which habituate more rapidly and show longer recovery times than do those in the intact bulb. In addition, the synchronization of such units to the inhalation cycle is markedly reduced as compared with normal preparations. These facts together suggest that the habituation of mitral cell activity does not depend on centrifugal inputs, although one or more of such inputs act indirectly in an inhibitory fashion to modulate and tune mitral cell response characteristics.  相似文献   

5.
The vertebrate olfactory system has long been an attractive model for studying neuronal regeneration and adaptive plasticity due to the continuous neurogenesis and synaptic remodelling throughout adult life in primary and secondary olfactory centres, its precisely ordered synaptic network and accessibility for manipulation. After homotopic transplantation of fetal olfactory bulbs in bulbectomized neonatal rodents, newly regenerated olfactory neurons form glomeruli within the graft, and the efferent mitral/tufted cells of the transplant innervate the host brain, terminating in higher olfactory centres. However, the synaptic connections of the transplanted relay neurons within the graft and/or host's olfactory centres could not be characterized mainly because of lack of suitable cell-specific markers for these neurons. In this study, we have used olfactory bulbs from transgenic fetuses, in which the majority of the mitral/tufted cells express the bacterial enzyme beta-galactosidase, for homotopic olfactory bulb transplantation following complete unilateral bulbectomy. In the transplants, the cell bodies and terminals of the donor mitral/tufted cells were identified by beta-galactosidase histochemistry and immunocytochemistry at both light and electron microscope levels. We demonstrate that transplanted relay neurons re-establish specific synaptic connections with host neurons of the periphery, source of the primary signal and central nervous system, thereby providing the basis for a functional recovery in the lesioned olfactory system.  相似文献   

6.
The accessory olfactory bulb (AOB) is a primary center of the vomeronasal system. In the dog, the position and morphology of the AOB remained vague for a long time. Recently, the morphological characteristics of the dog AOB were demonstrated by means of lectin-histochemical, histological, and immunohistochemical staining, although the distribution of each kind of neuron, especially granule cells, remains controversial in the dog AOB. In the present study, we examined the distribution of neuronal elements in the dog AOB by means of immunohistochemical and enzyme-histochemical staining. Horizontal paraffin or frozen sections of the dog AOB were immunostained with antisera against protein gene product 9.5 (PGP 9.5), brain nitric oxide synthase (NOS), glutamic acid decarboxylase (GAD), tyrosine hydroxylase (TH), substance P (SP), and vasoactive intestinal polypeptide (VIP) by avidin-biotin peroxidase complex method. In addition, frozen sections were stained enzyme-histochemically for NADPH-diaphorase. In the dog AOB, vomeronasal nerve fibers, glomeruli, and mitral/tufted cells were PGP 9.5-immunopositive. Mitral/tufted cells were observed in the glomerular layer (GL) and the neuronal cell layer (NCL). In the NCL, a small number of NOS-, GAD-, and SP-immunopositive and NADPH-diaphorase positive granule cells were observed. In the GL, GAD-, TH-, and VIP-immunopositive periglomerular cells were observed. In the GL and the NCL, TH-, and VIP-immunopositive short axon cells were also observed. In addition to these neurons, TH- and SP-immunopositive afferent fibers were observed in the GL and the NCL. We could distinctly demonstrate the distribution of neuronal elements in the dog AOB. Since only a small number of granule cells were present in the dog AOB, the dog AOB did not display such a well-developed GCL as observed in the other mammals.  相似文献   

7.
The distribution, morphological features, and postnatal development of parvalbumin (PV) immunoreactive neurons in the main olfactory bulb (MOB) of the house musk shrew, Suncus murinus, were studied to report for the first time on PV positive bulbar interneurons in the order Insectivora. In adult animals, PV neurons are distributed in the glomerular layer (GL), the external plexiform layer (EPL), the internal plexiform layer (IPL) and the granule cell layer (GCL) of the MOB. These neurons were identified as a subpopulation of periglomerular cells and perinidal cells [Alonso et al., 1995] in the GL and at the GL-EPL border, respectively, and as bipolar and multipolar neurons in the EPL and four types of the interneurons (horizontal cells, Cajal cells, Golgi cells, and bitufted cells) in the layers deeper than the mitral cell layer. During development of PV neurons, neurons exhibiting extremely faint PV immunoreactivity first appeared in the GCL at postnatal day 14 and increased markedly in number and intensity of their PV immunoreactivity from postnatal days 14 to 28. At postnatal day 21, PV neurons were identified as periglomerular cells in the GL, perinidal cells at the GL-EPL border, and morphologically unidentifiable neurons in the EPL, IPL and GCL. At postnatal day 28, PV neurons exhibited a nearly adult pattern with respect to distribution and structural features. The present results strongly suggest that a wide variety of PV positive neurons in the MOB of the house musk shrew may develop postnatally.  相似文献   

8.
Whole-cell patch clamp recording techniques were applied to periglomerular (PG) cells in slices of the frog olfactory bulb (OB) to study the properties of the excitatory synapses in the triad formed by the olfactory nerve (ON) and the dendrites of mitral/tufted (MT) cells and PG cells. The postsynaptic response evoked by ON stimulation was glutamatergic and could be dissected into NMDA and non-NMDA components of equivalent amplitudes. The dendro-dendritic synapse between MT and PG cells could be activated following antidromic stimulation of the lateral and medial olfactory tract (LOT and MOT). In this case the postsynaptic potentials had amplitudes and durations comparable to those obtained by ON stimulation, the neurotransmitter was glutamate, but the synapse was largely dominated by the slow NMDA component.  相似文献   

9.
Tyrosine hydroxylase (TH), expressed in a population of periglomerular neurons intrinsic to the olfactory bulb, displays dramatic down-regulation in response to odor deprivation. To begin to elucidate the importance of immediate early genes (IEG) in TH gene regulation, the present study examined expression of IEGs in the olfactory bulb in response to odor deprivation. In addition, the composition of TH AP-1 and CRE binding complexes was investigated in control and odor-deprived mice. Immunocytochemical studies showed that c-Fos, Fos-B, Jun-D, CRE-binding protein (CREB), and phosphorylated CREB (pCREB) are colocalized with TH in the dopaminergic periglomerular neurons. Unilateral naris closure resulted in down-regulation of c-Fos and Fos-B, but not Jun-D, CREB, or pCREB, in the glomerular layer of the ipsilateral olfactory bulb. Gel shift assays demonstrated a significant decrease (32%) in TH AP-1, but not CRE, binding activity in the odor-deprived bulb. Fos-B was found to be the exclusive member of the Fos family present in the TH AP-1 complex. CREB, CRE modulator protein (CREM), Fos-B, and Jun-D, but not c-Fos, all contributed to the CRE DNA-protein complex. These results indicated that Fos-B, acting through both AP-1 and CRE motifs, may be implicated in the regulation of TH expression in the olfactory bulb dopaminergic neurons.  相似文献   

10.
The morphological characteristics and distribution of neurocalcin (NC)-immunoreactive elements were studied in the rat main olfactory bulb (OB) using a polyclonal antibody and the avidin-biotin immunoperoxidase method. NC-positive elements were abundant in the glomerular layer (GL), where numerous immunostained external tufted cells and periglomerular cells were detected. Other less abundant NC-immunolabeled populations included middle and internal tufted cells, Van Gehuchten cells, horizontal cells, vertical cells of Cajal, deep short-axon cells and granule cells. This study demonstrates the presence of NC immunoreactivity in subsets of different neuronal types in the rat main OB. This calcium-binding protein has been found in interneurons, and no evidence of immunoreactivity to NC is detected in projecting neurons. Despite the large population of labeled external tufted cells, most of them belong according to morphological criteria to the local circuit group and some others to those with interbulbar and/or intrabulbar connections. The identification of neuronal subpopulations expressing NC provides a further characterization and shows the existence of biochemical differences within morphologically identical neurons. Thus, this marker may be a useful tool in unravelling the circuitries of the rodent OB in both normal and experimental conditions. The exact physiological function of NC in the olfactory system remains unknown. On the basis of similarities to recoverin, it could be involved in mechanisms responsible for sensory adaptation. Additionally, its calcium-binding abilities may contribute to improve the temporal precision of stimuli transmission, or be concerned with general calcium-related events occurring in specific interneuronal groups.  相似文献   

11.
In the frog, unitary electrophysiological recordings have been extensively used to investigate odor processing along the olfactory pathways. From the responses of primary second-order neurons, neuroreceptor and mitral cells, odor stimuli could be classified in qualitative groups, revealing that neuronal discriminative mechanisms are partly based on the structure of odor molecule. In the olfactory bulb, thanks both to the anatomical convergence of primary afferences and intrinsic network properties, mitral cells have been demonstrated to gain in odor discrimination and detection power abilities. GABAergic bulbar interneurons were found to be involved in the control of mitral cell excitability, adjusting response thresholds and duration and promoting a progressive increase of burst discharges with stimulus concentration. Otherwise, dopamine was observed to shunt off mitral cell spontaneous activity without altering their odor responsivity properties. Dopamine was demonstrated to act through D2 receptors. Matching anatomical and electrophysiological data, D2 receptors are assumed to be localized on mitral cells. The frog olfactory cortex neurons, silent at rest, could be segregated in two functional groups basing on their odor response properties. The first group shared most intensity coding properties with mitral cells while showing a lower discriminative power, similar to that of neuroreceptor cells. By contrast, the second group provided only minimal intensity coding and, basing on its high discrimination power, was assumed to be mainly devoted to odor discrimination. Thus, along the olfactory pathways, intensity and quality odor parameters which are simultaneously encoded by a neuroreceptor or mitral cell, become specified by two distinct populations in the cortex.  相似文献   

12.
Recent progress in the studies of the olfactory system, especially in the molecular biological studies, makes it one of the useful sensory model systems for understanding neural mechanisms for the information processing. In the olfactory bulb, the primary center of the olfactory system, glomeruli are regarded as important functional units in the transmission of odorant signals and in processing the olfactory information, but have been believed to be composed by only a small number of neuronal types and thus to be simple in their neuronal and synaptic organization. However, accumulating morphological data reveal that each type of neurons might further consist of several different subpopulations, indicating that the organization of glomeruli might not be so simple as it was believed. Here we describe an aspect of the structural organization of glomeruli, focusing on the heterogeneities of periglomerular neurons in mammalian main olfactory bulb.  相似文献   

13.
The presence and distribution of intracellular Ca2+ release pathways in olfactory bulb neurons were studied in dissociated cell cultures. Histochemical techniques and imaging of Ca2+ fluxes were used to identify two major intracellular Ca2+ release mechanisms: inositol 1, 4,5-triphosphate receptor (IP3R)-mediated release, and ryanodine receptor-mediated release. Cultured neurons were identified by immunocytochemistry for the neuron-specificmarker beta-tubulin III. Morphometric analyses and immunocytochemistry for glutamic acid-decarboxylase revealed a heterogeneous population of cultured neurons with phenotypes corresponding to both projection (mitral/tufted) and intrinsic (periglomerular/granule) neurons of the in vivo olfactory bulb. Immunocytochemistry for the IP3R, and labeling with fluorescent-tagged ryanodine, revealed that, irrespective of cell type, almost all cultured neurons express IP3R and ryanodine binding sites in both somata and dendrites. Functional imaging revealed that intracellular Ca2+ fluxes can be generated in the absence of external Ca2+, using agonists specific to each of the intracellular release pathways. Local pressure application of glutamate or quisqualate evoked Ca2+ fluxes in both somata and dendrites in nominally Ca2+ free extracellular solutions, suggesting the presence of IP3-dependent Ca2+ release. These fluxes were blocked by preincubation with thapsigargin and persisted in the presence of the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Local application of caffeine, a ryanodine receptor agonist, also evoked intracellular Ca2+ fluxes in the absence of extracellular Ca2+. These Ca2+ fluxes were suppressed by preincubation with ryanodine. In all neurons, both IP3- and ryanodine-dependent release pathways coexisted, suggesting that they interact to modulate intracellular Ca2+ concentrations.  相似文献   

14.
In a neural model of olfactory bulb processing, we demonstrate the putative role of the modulation of two types of inhibition, inspired by electrophysiological data on the effect of acetylcholine and noradrenaline on olfactory bulb synaptic transmission. Feedback regulation of modulation based on bulbar activity serves to 'normalize' the activity of output neurons in response to different levels of input activities. This mechanism also decreases the overlap between pairs of output patterns (Mitral cell activities), enhancing the discrimination between overlapping olfactory input patterns. The effect of the modulation at the two levels of interneurons is complementary: while an increase in periglomerular inhibition decreases the number of responding output neurons, a decrease in granule cell inhibition increases the firing frequencies of these neurons.  相似文献   

15.
The anterior portion of the neonatal telencephalic subventricular zone (SVZa) contains proliferating cells that generate an immense number of neurons destined to become the granule and periglomerular cells of the olfactory bulb. In contrast to other immature neurons in the central nervous system, cells arising in the SVZa maintain the ability to divide as they traverse the rostral migratory stream to their final destinations despite expressing an antigenic marker of differentiated neurons (Menezes et al. [1995] Molec. Cell. Neurosci. 6:496-508). Because of their considerable proliferative capacities and unusual mitotic behavior, we decided to determine the cell cycle length of proliferating cells within the SVZa and within the migratory pathway used by SVZa-derived cells. Following the methodology of Nowakowski et al. [1989](J. Neurocytol. 18:311-318), postnatal day 2 rat pups were exposed to 5'-bromo-2'deoxyuridine (BrdU) for increasing periods of time before perfusion. By plotting the percentage of nuclei undergoing DNA synthesis in the SVZa at each time versus the BrdU labeling interval, we determined that approximately 15% of the SVZa population is actively dividing and that these cells have a cycle length of approximately 14 hr, significantly less than the 18.6 hr determined to be the cycle length of dividing cells in more posterior, glia-generating regions of the subventricular zone (Thomaidou et al. [1997] J. Neurosci. 17:1075-1085). The cycle length of cells dividing in the mid portion of the rostral migratory stream, however, is considerably longer: 17.3 hr. This may reflect the need for these cells to coordinate the processes of migration and division. Our studies also suggest that there may be regional differences in the types of descendants produced by the proliferating cells. Retroviral lineage tracing studies showed that those cells that divide within the rostral migratory stream, like proliferating cells within the SVZa, make cells destined for the olfactory bulb. Unlike the progenitors that divide within the SVZa and generate more granule cells than periglomerular cells, the proliferating cells within the migratory pathway generate more periglomerular cells than granule cells. Collectively the proliferating cells of the SVZa and migratory pathway produce a large number of olfactory bulb interneurons. Our work suggests that this may be achieved in part by the relatively rapid divisions of progenitor cells within the SVZa and in part by the ongoing division of migrating cells en route to the olfactory bulb.  相似文献   

16.
The accessory olfactory bulb (AOB) is the first relay station in the vomeronasal system and may play a critical role in processing pheromone signals. The AOB shows similar but less distinct lamination compared with the main olfactory bulb (MOB). In this study, synaptic organization of the AOB was analyzed in slice preparations from adult rats by using both field potential and patch-clamp recordings. Stimulation of the vomeronasal nerve (VN) evoked field potentials that showed characteristic patterns in different layers of the AOB. Current source density (CSD) analysis of the field potentials revealed spatiotemporally separated loci of inward current (sinks) that represented sequential activation of different neuronal components: VN activity (period I), synaptic excitation of mitral cell apical dendrites (period II), and activation of granule cells by mitral cell basal dendrites (period III). Stimulation of the lateral olfactory tract also evoked field potentials in the AOB, which indicated antidromic activation of the mitral cells (period I and II) followed by activation of granule cells (period III). Whole cell patch recordings from mitral and granule cells of the AOB supported that mitral cells are excited by VN terminals and subsequently activate granule cells through dendrodendritic synapses. Both CSD analysis and patch recordings provided evidence that glutamate is the neurotransmitter at the vomeronasal receptor neuron; mitral cell synapses and both NMDA and non-NMDA receptors are involved. We also demonstrated electrophysiologically that reciprocal interaction between mitral and granule cells in the AOB is through the dendrodendritic reciprocal synapses. The neurotransmitter at the mitral-to-granule synapses is glutamate and at the granule-to-mitral synapse is gamma-aminobutyric acid. The synaptic interactions among receptor cell terminals, mitral cells, and granule cells in the AOB are therefore similar to those in the MOB, suggesting that processing of chemosensory information in the AOB shares similarities with that in the MOB.  相似文献   

17.
Sheep learn to recognize the odours of their lambs within two hours of giving birth, and this learning involves synaptic changes within the olfactory bulb. Specifically, mitral cells become increasingly responsive to the learned odour, which stimulates release of both glutamate and GABA (gamma-aminobutyric acid) neurotransmitters from the reciprocal synapses between the excitatory mitral cells and inhibitory granule cells. Nitric oxide (NO) has been implicated in synaptic plasticity in other regions of the brain as a result of its modulation of cyclic GMP levels. Here we investigate the possible role of NO in olfactory learning. We find that the neuronal enzyme nitric oxide synthase (nNOS) is expressed in both mitral and granule cells, whereas the guanylyl cyclase subunits that are required for NO stimulation of cGMP formation are expressed only in mitral cells. Immediately after birth, glutamate levels rise, inducing formation of NO and cGMP, which potentiate glutamate release at the mitral-to-granule cell synapses. Inhibition of nNOS or guanylyl cyclase activity prevents both the potentiation of glutamate release and formation of the olfactory memory. The effects of nNOS inhibition can be reversed by infusion of NO into the olfactory bulb. Once memory has formed, however, inhibition of nNOS or guanylyl cyclase activity cannot impair either its recall or the neurochemical release evoked by the learned lamb odour. Nitric oxide therefore seems to act as a retrograde and/or intracellular messenger, being released from both mitral and granule cells to potentiate glutamate release from mitral cells by modulating cGMP concentrations. We propose that the resulting changes in the functional circuitry of the olfactory bulb underlie the formation of olfactory memories.  相似文献   

18.
Serotonin2 receptors have been implicated in a variety of behavioral and physiological processes, as well as a number of neuropsychiatric disorders. To specify the brain regions and specific cell types possessing serotonin2 receptors, we conducted an immunocytochemical study of the rat brain using a polyclonal serotonin2 receptor antibody. Perfusion-fixed rat brain sections were processed for immunocytochemistry and reactivity was visualized using an immunoperoxidase reaction. Numerous small, round neurons were heavily labeled in the granular and periglomerular regions of the olfactory bulb. Heavy labeling of medium-sized multipolar and bipolar neurons was also seen in olfactory regions of the ventral forebrain, including the anterior olfactory nucleus and olfactory tubercle. Other regions of the basal forebrain exhibiting high levels of immunoreactivity were the nucleus accumbens, ventral pallidum, Islands of Calleja, fundus striatum and endopyriform nucleus. Immunoreactive neurons were also seen in the lateral amygdala. A dense band of small, round cells was stained in layer 2 of pyriform cortex. In neocortex, a very sparse and even distribution of bipolar and multipolar neurons was seen throughout layers II-VI. A much more faintly labeled population of oval cells was observed in the deep layer of retrosplenial and posterior cingulate cortex, and in the granular layer of somatosensory frontoparietal cortex. A moderate number of medium bipolar and multipolar cells were scattered throughout the neostriatum, and a moderate number of pyramidal and pyramidal-like cells were seen in the CA fields of the hippocampus. Diencephalic areas showing immunolabeling included the medial habenula and anterior pretectal nucleus, with less labeling in the ventral lateral geniculate. In the hindbrain, two dense populations of large multipolar cells were heavily labeled in the pedunculopontine and laterodorsal tegmental nuclei, with lesser labeling in the periaqueductal gray, superior colliculus, spinal trigeminal nucleus and nucleus of the solitary tract. Based on the distribution, localization and morphology of immunoreactive neurons in these regions, we hypothesize that subpopulations of serotonin2 containing cells may be GABAergic interneurons or cholinergic neurons. Further, the observed distribution suggests that the physiological effects of serotonin acting through serotonin2 receptors are mediated by a relatively small number of cells in the brain. These observations may have strong functional implications for the pharmacological treatment of certain neuropsychiatric disorders.  相似文献   

19.
In situ hybridization has demonstrated mRNA for olfactory receptors (OR) in the axon terminals of olfactory receptor neurons. Neurons that express the same OR appear to send their axons to two stereotyped glomeruli in the olfactory bulb (OB). Based on these observations, we tested the feasibility of using RT-PCR to isolate and sequence OR mRNA from small samples of the rat OB glomerular layer. Biomagnetic mRNA isolation followed by RT-PCR yielded partial sequences for 21 novel members of the OR family. The results suggest that the topography of OR mRNA can be mapped across the OB, to study synaptic specificity and odor representation in the olfactory system.  相似文献   

20.
The highly sialylated isoform of the neural cell adhesion molecule is thought to be expressed predominantly in the developing nervous system, where it is implicated in a variety of dynamic events linked to neural morphogenesis. It has become increasingly evident, however, that this "embryonic" neural cell adhesion molecule isoform continues to be expressed in certain adult neuronal systems, and in particular, in those that can undergo structural plasticity. In the present study, we performed light microscopic immunocytochemistry with an antibody specific for polysialylated neural cell adhesion molecule and confirmed our earlier observations [Bonfanti L. et al. (1992) Neuroscience 49, 419-436] showing polysialylated neural cell adhesion molecule-immunoreactive cells in the subependymal layer of the lateral ventricle of the adult rat, a region where cell proliferation continues into the postnatal period. In addition, we used an antibody raised against the proliferating cell nuclear antigen and found that proliferating cells continue to be visible in this area, even in the adult. Double immunolabeling showed that many of these newly generated cells displayed high polysialylated neural cell adhesion molecule immunoreactivity. Cells from a portion of the subependymal layer migrate to the olfactory bulb and contribute to the continual replacement of its granule neurons [Luskin M. B. (1993) Neuron 11, 173-189]. We found polysialylated neural cell adhesion molecule-immunoreactive cells all along the pathway purported to be followed by the newly generated cells to their final destination and in neurons corresponding to granular and periglomerular cells in the olfactory bulb. Our present observations thus support the contention that polysialylation is a feature of neurons capable of dynamic change and may contribute to the molecular mechanisms permitting cell proliferation and migration not only during development but also in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号