首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
一种异构网络多媒体业务QoS类弹性映射方法   总被引:1,自引:0,他引:1  
 多媒体业务在异构网络传输过程中,由于现有的QoS(Quality of Service)类映射方法存在灵活性不足的问题,从而降低了系统端到端效能。针对这个问题,该文在深入分析当前的QoS类映射方法基础上,结合用户QoE (Quality of Experience)特点,借助于网络微积分理论,构建了QoS类映射的数学分析模型,并进行了理论分析。基于该数学分析模型,该文从用户QoE角度提出了具有弹性的QoS类映射方法(Elastic QoS Class Mapping Method, EQCMM),该方法根据当前网络资源的使用情况,通过灵活地调整QoS类映射,充分利用网络现有资源,提高了端到端带宽资源的利用率,改善了系统端到端的效能。最后,通过仿真验证了该方法的有效性。  相似文献   

2.
This paper investigates the quality-of-service (QoS)-driven multicast routing problem in a sparse-splitting optical network. The main objective is to minimize the total cost of wavelength channels utilized by the light-tree while satisfying required QoS parameters. In this paper, both the optical-layer constraints (e.g., optical signal power) and application-layer requirements (e.g., end-to-end delay and inter-destination delay variation) are considered as the QoS parameters. First, integer linear programming (ILP) formulations to solve the optimal multicast routing problem with the given QoS parameters are presented. Solving the ILP formulations for large-scale networks can easily overwhelm the capabilities of state-of-the-art computing facilities, and hence, a heuristic algorithm is proposed to construct a feasible light-tree that satisfies the required QoS parameters in large-scale networks. Simulation results demonstrate the performance of the proposed heuristic algorithm in terms of the cost of utilized wavelength channels.  相似文献   

3.
A new type of fair service, referred to as Statistically-Fair Service (SFS), is proposed in this paper. The SFS discipline is given based on the SFS criterion. Compared to "strict" fair service available, SFS is mainly characterized by its flexible suitability for the nature of statistically-multiplexed networks. By its statistically-fair service to users, therefore, SFS can ensure well end-to-end QoS requirements on a statistical basis with a benefit of enhancement in network utilization. Two useful properties of SFS is presented. One of them, the property of retaining Exponentially Bounded Burstiness(EBB), can facilitate end-to-end delay estimation of EBB-type traffic. Finally, some numerical results obtained from a simulation study on SFS shows that an SFS-equipped node in steady states will in deed retain the EBB attribute of any input flow.  相似文献   

4.
In wireless multihop networks, end-to-end (e2e) delay is a critical parameter for quality of service (QoS) guarantees. We employ discrete-time queueing theory to analyze the end-to-end (e2e) delay of wireless multihop networks for two MAC schemes, m-phase TDMA and slotted ALOHA. In one-dimensional (1-D) networks, due to the lack of sufficient multiplexing and splitting, a space–time correlation structure exists, the nodes are spatially correlated with each other, and the e2e performance cannot be analyzed as in general two-dimensional networks by assuming all nodes independent of each other. This paper studies an 1-D network fed with a single flow, an extreme scenario in which there is no multiplexing and splitting. A decomposition approach is used to decouple the whole network into isolated nodes. Each node is modeled as a GI/Geo/1 queueing system. First, we derive the complete per-node delay distribution and departure characterization, accounting for both the queueing delay and access delay. Second, based on the departure process approximation, we define a parameter to measure the spatial correlation and its influence on the e2e delay variance. Our study shows that traffic burstiness of the source flow and MAC together determines the sign of the correlation.  相似文献   

5.
As the rapid growth of smart hand-held devices, multihop wireless access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, we present an adaptive per hop differentiation (APHD) scheme towards achieving end-to-end delay assurance in multihop wireless networks. Our scheme is based on EDCA technique which is proposed in 802.11e draft. In EDCA, data packets of different priorities will use different MAC contention parameter set, which translate into different delays. Our APHD scheme extends the capability of EDCA into multihop environment by taking end-to-end delay requirement into consideration at each intermediate hop. Following a cross-layer design approach, APHD is aimed to be a distributed and localized technique. Individual nodes keep track of the channel state independently without any intercommunication overhead. Data packets carry end-to-end delay requirement along with other important information in the packet header. At an intermediate node, based on data packet’s end-to-end requirement, its accumulative delay so far, and the current node’s channel status, APHD smartly adjusts data packet’s priority level in order to satisfy its end-to-end delay requirement. Simulation results show that APHD scheme can provide excellent end-to-end delay assurance while achieving much higher network utilization, compared to a pure EDCA scheme.  相似文献   

6.
Upcoming broadband commercial and scientific applications are now demanding high bandwidth pipes across multiple domains with guaranteed Quality of Service (QoS). Recent research initiatives such as the Path Computation Element (PCE) framework are focusing on the development of scalable multi-domain QoS provisioning frameworks, especially within the emerging carrier grade transport technologies based on layer-2 tunnels. QoS provisioning across multiple domains requires that QoS parameters for available transit paths inside a domain be advertised in the inter-domain routing algorithms, while the dynamic inter- and intra-domain connections vary the available resource, and hence require frequent inter-domain updates. The signaling load on the other hand hampers the scalability of the inter-domain routing mechanisms. We propose the use of an adaptive partitioning framework, which can effectively use network resources and at the same time stabilize the advertised domain topologies and thus path advertisements. Our method partitions network resources by pre-reserving resources for inter-domain transit traffic, and uses policies to modify the resource partitioning in order to maintain the available transit capacity between specified bounds. We show by simulations that the proposed mechanism can reduce inter-domain signaling load by 10%-20% and reduce overall blocking inside a domain by creating a trade-off between available resources for intra-domain connections and inter-domain transit connections. The reduction in inter-domain signaling and blocking can be used as a building block to design scalable QoS routing systems for carrier grade transport networks.  相似文献   

7.
Cross-Layer Design for Data Accessibility in Mobile Ad Hoc Networks   总被引:14,自引:0,他引:14  
Mobile ad hoc networks (MANET) are becoming an integral part of the ubiquitouscomputing and communication environment, providing new infrastructure formultimedia applications such as video phone, multimedia-on-demand, and others.In order to access multimedia information in MANET, Quality of Service (QoS)needs to be considered, such as high success rate to access multimedia data,bounded end-to-end delay, and others. In this paper, we present a dataaccessibility service for a group of mobile users to access desired data withhigh success rate. This accessibility service is only possible if we utilizeadvanced data advertising, lookup and replication services, as well as a novelpredictive location-based QoS routing protocol in an integrated fashion. Usingcross-layer design, we illustrate how the QoS routing protocol assists dataadvertising, lookup and replication services to achieve high data accesssuccess rate. Simulation results have shown that our design is successful ina dynamic MANET.  相似文献   

8.
Many scheduling techniques have been developed to solve the problem of sharing the common channel to multiple stations. TDMA has been increasingly used as a scheduling technique in ad-hoc networks. The current trend for QoS capable applications led to the deployment of numerous routing schemes that use TDMA. These schemes try to solve the problem of distributing the available slots among the wireless nodes and at the same time, to find paths within the network that fulfill some QoS related limitations, such as end-to-end delay. The exact way the slots are distributed among the transmitting nodes has an impact on the end-to-end delay and other performance parameters of the network, such as capacity. Therefore, the efficiency of the scheduling algorithms is closely related to the network topologies. In this paper, we propose two new end-to-end TDMA scheduling algorithms that try to enhance the network capacity by increasing the number of concurrent connections established in the network, without causing additional end-to-end delay. We study the efficiency of the proposed algorithms, when applied on various random topologies, and compare them in terms of end-to-end delay and network capacity.  相似文献   

9.
Mobile ad hoc networks typically use a common transmission power approach for the discovery of routes and the transmission of data packets. In this paper we present PCQoS; a power-controlled Quality of Service (QoS) scheme for wireless ad hoc networks which builds QoS mechanisms for specific applications that wish to tradeoff better QoS performance for sub-optimal paths. PCQoS allows selected flows to modify their transmit power as a way to add and remove relay nodes from their paths in order to coarsely modify their observed application QoS performance. We present simulation results and show that PCQoS can be used to provide coarse control over traditional QoS metrics (e.g., delay, throughput). To the best of our knowledge the PCQoS protocol represents the first attempt to use variable-range transmission control as a means to provide QoS differentiation to applications in wireless ad hoc networks.  相似文献   

10.
There has been a growing interest in the use of wireless mesh networks. Today’s wireless technology enables very high data rate up to hundreds of Megabits per second, which creates the high demand of supporting real-time multimedia applications over wireless mesh networks. Hence it is imperative to support quality of service (QoS) in wireless mesh networks. In this paper, we design a framework to provide parameterized QoS in 802.11e based wireless mesh networks. Our framework consists of admission control algorithms and scheduling algorithms, which aim at supporting constant bit-rate (CBR) traffic flows, as well as variable bit-rate (VBR) traffic flows. We first present deterministic end-to-end delay bounds for CBR traffic. We then prove that the delay of VBR traffic can be bounded if the traffic flow conforms to a leaky-bucket regulator. We further study different admission control algorithms for VBR traffic. Our simulation results show that, by taking advantage of statistical multiplexing, much more traffic flows can be admitted.  相似文献   

11.
域间的流量工程策略有助于保证业务流的端到端QoS、提高网络资源利用率并实施跨域的快速恢复.本文介绍了域间流量工程的研究现状,并详细分析了不同的实现方法.最后指出了实施域间流量工程的困难所在及以后的研究方向.  相似文献   

12.
1IntroductionMobile users want to enjoy multi media and other real-ti me services in the Internet . Thus the Internet Engi-neering Task Force (IETF) has introduced the MobileIPv4[1]and Mobile IPv6[2]to interoperate seamlesslywith protocols that provide real-ti me services in the In-ternet. Multi-Protocol Label Switching ( MPLS) is afast label-based switching technology that integrates thelabel-swapping paradigm with network-layer routing[3].Resource Reservation Protocol ( RSVP)[4 ~…  相似文献   

13.
域间的流量工程策略有助于保证业务流的端到端QoS,提高网络资源利用率并实施跨域的快速恢复。本文介绍了域间流量工程的研究现状,并详细分析了不同的实现方法。最后指出了实施域间流量工程的困难所在及以后的研究方向。  相似文献   

14.
Quality-of-service (QoS) in wireless ad hoc networks is adversely affected by node mobility, changing network topologies, and uncontrolled medium contention. The paper addresses the challenges in concurrently providing a wide range of end-to-end throughput and delay assurances in such networks. The proposed solution is based on the neighborhood proportional delay differentiation (NPDD) service model. With NPDD, applications achieve their desired end-to-end QoS using dynamic class selection (DCS) algorithms. With simulations in various distinct mobile network scenarios, we demonstrate the significantly better QoS assurances achieved with the proposed mechanism as compared with best effort and strict priority approaches. With game theoretic concepts, we model DCS applications in an NPDD network as selfish players in a noncooperative game. For such games, we prove for single-hop and multihop NPDD networks the existence of an equilibrium, the feasibility of an equilibrium, and the guaranteed convergence to a feasible equilibrium when one exists.  相似文献   

15.

Growth in multimedia traffic over the Internet increases congestion in the network architecture. Software-Defined Networking (SDN) is a novel paradigm that solves the congestion problem and allows the network to be dynamic, intelligent, and it centrally controls the network devices. SDN has many advantages in comparison to traditional networks, such as separation of forwarding and control plane from devices, global centralized control, management of network traffic. We design a policy-based framework to enhance the Quality of Service (QoS) of multimedia traffic flows in a potential SDN environment. We phrase a max-flow-min-cost routing problem to determine the routing paths and presented a heuristic method to route the traffic flows in the network in polynomial time. The framework monitors the QoS parameters of traffic flows and identifies policy violations due to link congestion in the network. The introduced approach dynamically implements policy rules to SDN switches upon detection of policy violations and reroutes the traffic flows. The results illustrate that the framework achieves a reduction in end-to-end delay, average jitter, and QoS violated flows by 24%, 37%, and 25%, respectively, as compared to the Delay Minimization method. Furthermore, the proposed approach has achieved better results when compared to SDN without policy-based framework and reduced end-to-end delay, average jitter, and QoS violated flows by 51%, 62%, and 28%, respectively.

  相似文献   

16.
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.  相似文献   

17.
Wireless mesh networks (WMNs) can provide seamless broadband connectivity to network users with low setup and maintenance costs. To support next-generation applications with real-time requirements, however, these networks must provide improved quality of service guarantees. Current mesh protocols use techniques that fail to accurately predict the performance of end-to-end paths, and do not optimize performance based on knowledge of mesh network structures. In this paper, we propose QUORUM, a routing protocol optimized for WMNs that provides accurate QoS properties by correctly predicting delay and loss characteristics of data traffic. QUORUM integrates a novel end-to-end packet delay estimation mechanism with stability-aware routing policies, allowing it to more accurately follow QoS requirements while minimizing misbehavior of selfish nodes.  相似文献   

18.
This paper presents an end-to-end reservation protocol for quality-of-service (QoS) support in the medium access control layer of wireless multihop mesh networks. It reserves periodically repeating time slots for QoS-demanding applications, while retaining the distributed coordination function (DCF) for best effort applications. The key features of the new protocol, called "distributed end-to-end allocation of time slots for real-time traffic (DARE), are distributed setup, interference protection, and scheduling of real-time data packets, as well as the repair of broken reservations and the release of unused reservations. A simulation-based performance study compares the delay and throughput of DARE with those of DCF and the priority-based enhanced distributed channel access (EDCA) used in IEEE 802.11e. In contrast to DCF and EDCA, DARE has a low, nonvarying delay and a constant throughput for each reserved flow  相似文献   

19.
Based on cross-layer design, a modified 2-dimensional queuing model (2DQM) is proposed in this paper to tackle the problem of end-to-end quality of service (QoS) metric calculation. This model exploits the traffic arrival process, multi-rate transmission in the physical layer and error recovery technology with the protocol of truncated automatic repeat request in the data link layer. Based on this model, QoS metrics of wireless links can be evaluated hop by hop. The model can be used in more realistic scenarios of multi-hop wireless networks, although the computational complexity of 2DQM is slightly higher compared with existing 1-dimensional queuing model. Simulation results indicate that the proposed model can estimate the end-to-end packet loss-rate and average delay more accurately than existing models, and a model based QoS routing algorithm can find routes with better QoS performance (with lower end-to-end packet loss-rate and delay).  相似文献   

20.
文章研究并提出了基于业务感知的认知网络服务质量(QoS)自适应控制架构。该架构在智能业务感知和分类模型的基础上对数据包进行分类和识别,并借鉴控制理论通过基于端路协同的认知网络业务流QoS自适应控制机制实现对网络流量的控制。在认知网络环境下,该架构可以构建QoS的自动感知、分析、关联、反馈、决策、配置和实施机制,进行资源的优化调整分配,适应网络环境的变化,优化网络端到端的性能,保证用户的服务质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号