首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Theoretical studies on the water-vapour corrosion resistance of barium aluminosilicates were carried out using Mulliken analysis based on first principles. The Mulliken population of Si–O bonds in different barium aluminosilicates was calculated. The water-vapour corrosion resistance of them was predicted based on these calculation results. In order to verify the prediction results, four barium aluminosilicate powders were synthesized by sol–gel method, and the water-vapour corrosion behaviour of these materials was studied at 1250 °C in an atmosphere of 50%H2O–50%O2 water-vapour flowing at a rate of 0.85 mm/s. The experimental results were consistent with the predictions by first principles. This work suggested a methodology for design and selection of silicate materials with good water-vapour corrosion resistance.  相似文献   

2.
Intergranular corrosion (IGC) of type 409L ferritic stainless steel (FSS) was investigated. A free-exposure corrosion and a double loop electrochemical potentiokinetic reactivation (DL-EPR) tests were conducted to examine IGC of the FSS. IGC occurred in the specimens aged at the temperature range of 400–600 °C that has the sensitization nose located around 600 °C. The critical Ir/Ia value was determined to be about 0.03 above which IGC occurred. Based on the analysis of the intergranular precipitates by an energy dispersive spectroscopy (EDS) and a transmission electron microscopy (TEM), IGC was induced by the Cr depletion zone formation due to Cr segregation around intergranular TiC.  相似文献   

3.
Titanium (Ti) was successfully brazed at low temperatures below 800 °C by employing a Zr41.2Ti13.8Ni10.0Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) alloy as a filler. Through the use of this alloy filler, the detrimental segregation of Zr–Cu–Ni filler elements was completely eliminated by heating to well below 800 °C, so the resultant joint was quite homogeneous with a coarse acicular structure. The disappearance of the Zr–Cu–Ni segregated region was rate-controlled by the diffusion of the filler elements in the Ti base metal. Remarkably, the mechanical property and corrosion resistance of the homogeneous joint brazed at 800 °C for 10 min were mostly comparable to those of bulk Ti.  相似文献   

4.
The transition from metastable to stable pitting was studied in 0.5 M NaCl water solution for two cast duplex stainless steels under different microstructural conditions achieved by annealing in the range from 900 °C to 1200 °C. The ensuing microstructural changes in heat treated steels were defined and correlated with established pitting potentials (Ep) and sites of corrosion damage initiation. The variations in Ep have been discussed in terms of secondary phases precipitation. The critical condition for pit stability was quantified and used to select an appropriate microstructural state, resulting in the higher potential at which stable pit growth is first observed.  相似文献   

5.
Significant differences in the thermal, elastic and mechanical behavior of bulk metallic glasses (BMGs) based on rare earth (RE) elements (i.e., Pr-based, Ce-based and Nd-based) have been found when comparing them with archetypical Zr-based and Ti-based amorphous metallic alloys. Our results show that RE-BMG exhibits a large supercooled liquid region, low elastic constants and concomitant elastic softening, low hardness, complete lack of macroscopic plasticity and compressive fracture angles, ψC,F, larger than 45° (as opposed to polycrystalline materials, where ψC,F = 45°, and conventional BMGs, where ψC,F ≤ 45°). Most of these features stem from the rather low glass transition temperature displayed by these alloys, which is relatively close to room temperature. However, contrary to some previous studies, our observations reveal that the lack of plasticity of these materials cannot be simply rationalized in terms of their Poisson’s ratio but is also due to some tensile features (i.e., dilatational effects) accompanying compressive fracture behavior.  相似文献   

6.
Steel corrosion behaviour in carbonated alkali-activated slag concrete   总被引:3,自引:0,他引:3  
Steel bars embedded in an alkali-activated slag (AAS) concrete were exposed (after curing for 28 days) to an accelerated carbonation test (3% CO2, 65% relative humidity (RH), and 25 °C temperature) and a laboratory environment (0.03% CO2, 65% RH, and 25 °C). Ordinary Portland cement (OPC) was also tested for comparative purposes and exposed to identical experimental conditions. The corrosion behaviour of uncarbonated and carbonated AAS and OPC concretes was tested for different times, performing corrosion potential, linear polarization resistance, and electrochemical impedance spectroscopy measurements. Corrosion products were analysed using the Mössbauer technique. The main corrosion products found were magnetite (Fe3O4), wüstite (FeO), and goethite (α-FeOOH).  相似文献   

7.
The H2S corrosion resistance of a C–Mn pipeline steel with three different microstructures has been evaluated using electrochemical techniques with a 3% wt. NaCl solution at 50 °C. Microstructures included martensite, ferrite, and ferrite + bainite. Electrochemical techniques included potenthiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and electrochemical noise (EN) measurements. Most of the tests lasted 24 h. All techniques showed that the highest corrosion rate corresponded to the steel with a martensitic microstructure; up to one order of magnitude higher than the corrosion rate for steels with a ferritic + bainitiic microstructure, whereas the steel with the ferritic microstructure showed the lowest corrosion rate. EIS tests showed that the corrosion process was under charge transfer control, whereas EN results indicated that the three steels exhibited a clear tendency towards a localized type of corrosion. However, for longer immersion times, the steel with a martensitic microstructure tended to exhibit a mixture of uniform and localized attack. Results were discussed in terms of grain size, grain boundary energy, amount and distribution of particles found in each steel.  相似文献   

8.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

9.
The corrosion resistance of Ti and Ti–6Al–4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV–Vis spectrophotometry. The tests were done in Hank solution at 25 °C and 37 °C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 °C and 37 °C), and for Ti–6Al–4V (at 25 °C), which was interpreted as the formation and growth of a passive film on the metallic surfaces.  相似文献   

10.
Quenched Fe-C materials with up to 0.875 wt.% C were examined in 8.5 M NaOH at 100 °C to better understand the effect of carbon on caustic stress corrosion cracking (SCC) of plain steels. Carbon at contents up to about 0.23 wt.% C accelerated anodic dissolution of iron, whereas at high contents it hindered corrosion and promoted the formation of magnetite. It is suggested that carbon particles on the corroding surface form confined regions with an increased concentration of H+ and HFeO2, thereby favouring the formation of Fe3O4. Intergranular SCC can be explained by preferred anodic dissolution of grain boundary material enriched in carbon.  相似文献   

11.
The corrosion behaviour of molybdenum and steel materials, protected by electrochemically plated TiB2 coatings, in contact with liquid aluminium alloys and liquid glass in air has been studied. The corrosion performance tests followed by characterization of the treated samples by optical microscopy, SEM, elemental EDX analysis, have shown high corrosion resistance of the coatings to the liquid metal. However, the coating was not stable in contact with molten glass in an oxidative atmosphere at temperatures higher as 750-800 °C. Dissolution of the corrosion products in the melt facilitates the destruction of the coating.  相似文献   

12.
The paper mainly investigated the protective property, structure and composition of the oxide film on Alloy 625 in a lithium borate buffer solution (pH300°C = 6.93) in the temperature range of 25–300 °C. The methods used were electrochemical measurements and XPS analysis. As temperature increased, the protective property of the oxide film degraded, and the structure varied from a singe-layer to double-layer. The oxide film consisted of Cr2O3 and Cr(OH)3 at 25 and 150 °C, while it contained Ni(OH)2, in addition to Cr2O3 and Cr(OH)3 at 250 and 300 °C. This was mainly attributed to the temperature-induced variation of composition and protective property of the barrier layer.  相似文献   

13.
To proof the corrosion efficiency of hydroxyethyl, aminoethyl and amidoethyl imidazolines, they were evaluated by linear polarization resistance and polarization curves in deaerated 3% NaCl + Diesel + inhibitors saturated with CO2 at 50 °C. The most efficient inhibitor was the amido ethyl imidazoline, with an efficiency of 97.88% whereas the least efficient was the hydroxyethyl imidazoline, with an efficiency of 88.8%. A theoretical study of the corrosion inhibition efficiency of these imidazoline derivatives, was carried out using density functional theory (DFT). The computational calculations were used to obtain information about their molecular structure and those properties related with the inhibition efficiency of these inhibitors. The obtained correlations and theoretical conclusions agree well with the experimental results.  相似文献   

14.
Nano-crystalline TiAlCrSiYN plasma vapor deposited (PVD) coatings were developed for oxidation and wear protection at elevated temperatures. Compositional tuning of the coatings was performed to enhance oxidation protection at elevated temperatures.The oxidation kinetics of the coatings has been studied over 180 h at 900 °C in air. Post-oxidation microstructural examinations of specimens were performed using transmission electron microscopy (TEM), secondary electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and glow discharge optical emission spectroscopy (GDOES). Micro mechanical characteristics of the coating were studied using a micro materials nanotest system. Wear resistance of the coatings were studied during turning of Inconel 718.Experimental results clearly indicate that the aluminum-rich PVD TiAlCrSiYN coatings with 60 at.% of Al can improve oxidation resistance of titanium aluminide alloy at the temperature 900 °C as well as wear resistance during machining of Inconel 718. It was shown that during oxidation, continuous protective alumina-based oxide films form on the surface. These oxides are predominantly (Al,Cr)2O3-based films. Self-healing behavior of the TiAlCrSiYN coatings was observed in its ultra-fine nano-crystalline structure.  相似文献   

15.
The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Znacid) and a cyanide-free alkaline bath (Znalkaline)) and of Zn–Mn and Zn–Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn–Mn(432h) > Zn–Co(429h) > Znalkaline(298h) > Znacid(216h). The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn5(OH)8Cl2·H2O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn0.98O2, Mn5O8) in the Zn–Mn coating, and the formation of the hydroxide Zn2Co3(OH)10·2H2O in the Zn–Co coating, produced more compact and stable passive layers, with lower dissolution rates.  相似文献   

16.
A key microstructural feature that controls the sintering behavior of Ni + Ti powders was determined to be the transformation of alpha-Ti to beta-Ti during heating. The use of very fine Ni powders causes this transformation to occur at the eutectoid temperature (i.e., 765 °C). The use of coarse Ni powders causes a gradual beta-Ti transformation from 765 to 882 °C. At 950 °C a large volume fraction of beta-Ti remains in coarse Ni/Ti mixtures whereas in fine Ni/Ti mixtures this phase is almost eliminated. Further heating above 950 °C causes the beta-Ti to melt, initiating a large exothermic reaction in the coarse Ni/Ti mixtures (i.e., 158 J/g) at 980 °C. The use of fine Ni significantly reduces this reaction (i.e., 3 J/g). Consequently, Ni powder size, and its influence over beta-Ti content can be used to control the reactive sintering behavior of Ni + Ti mixtures.  相似文献   

17.
A fracture mechanics-based novel approach, i.e. circumferential notch tensile (CNT) testing has been employed for determination of threshold stress intensity factor for susceptibility of engineering materials to stress corrosion cracking (KISCC) using small specimens. Using CNT technique, KISCC of a carbon steel at an open circuit potential (Ecorr) in 500 g L−1 NaOH at 100 °C was determined to be 42.9 MPa m1/2. In order to establish the application of the CNT technique in understanding the mechanistic aspects of caustic cracking as well as for developing guidelines for mitigation, tests have also been performed under the imposed electrochemical potentials. An imposed potential in the active–passive potential regime (Ea–p) caused an extremely rapid failure (than observed at Ecorr) whereas, at an imposed potential in the passive region (Ep), the specimen did not fail even after relatively very long exposure time. The fractography of the CNT specimens tested at Ecorr and Ea–p presented evidence of SCC. The study has established the use of experimental CNT testing as a simple, relatively fast and cost-advantageous approach for generating the KISCC data, which are also consistent with the electrochemical mechanism for caustic cracking.  相似文献   

18.
Phase equilibria in the Co-rich Co–Al–W ternary system were determined with a unique diffusion-couple technique in which Co–27Al and Co–15W binary alloys (at. %) were first coupled for interdiffusion and then heat-treated for precipitation. After a diffusion process at 1300 °C for 20 h, concentration gradients of Al and W were formed in the γ-Co(A1) matrix in the vicinity of the coupled interface. After a heat treatment at 900 °C for 500 h the γ′-Co3(Al,W)(L12) phase was formed with a coarsened shape in contact with the γ, CoAl(B2) and Co3W(D019) phases. Additionally, it appeared with a submicron cuboidal shape within the γ matrix. After 2000 h, however, the coarsened γ′ phase became infrequent and the three phases of γ, CoAl and Co3W came into frequent contact with each other. These results clearly demonstrate that the γ′ phase is metastable and the three phases of γ, CoAl and Co3W are thermodynamically in equilibrium at 900 °C in the Co–Al–W ternary system.  相似文献   

19.
Multi-stage transformation (MST) in 500 °C annealed Ni-rich Ti49Ni41Cu10 shape memory alloy (SMA) is investigated by differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as solution-treated alloy undergoes B2 ↔ B19 ↔ B19′ two-stage transformations. Ti(Ni,Cu)2 precipitates are formed in 500 °C annealed specimens. Alloy annealed at 500 °C for 6–24 h exhibits MST. This MST is confirmed by DMA tests and is composed of B21 ↔ B191 ↔ B19′1 and B22 ↔ B192 ↔ B19′2 transformations corresponding to the regions near and far from Ti(Ni,Cu)2 precipitates, respectively. Experimental results show that the more the annealing time, the more the B21 ↔ B191 ↔ B19′1 transformations and finally only B21 ↔ B191 ↔ B19′1 transformations retain with the transformation temperatures close to those of Ti50Ni40Cu10 SMA.  相似文献   

20.
The oxidation behavior of a (Mo,W)Si2 composite with boride addition was examined at 300–1000 °C for 24 h in dry O2. The oxidation kinetics was studied using a thermobalance, and the oxide scales were analyzed using a combination of electron microscopy (SEM/EDX, FIB, BIB) and XRD. Accelerated oxidation was found to occur between 500 °C and 675 °C, with a peak mass gain at 625 °C. The rapid oxidation is attributed to the vaporization of molybdenum oxide that leaves a porous and poorly protective silica layer behind. At higher temperature (700–1000 °C) a protective scale forms, consisting of a dense SiO2/B2O3 glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号