首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
拉伸与热定型对聚苯硫醚长丝结构性能的影响   总被引:1,自引:1,他引:0  
以国产聚苯硫醚(PPS)树脂为原料,用熔融法纺丝制得PPS长丝。采用差示扫描量热仪、热重分析仪研究了后处理对纤维结晶和热性能的影响;利用声速取向测量仪研究了拉伸对纤维取向的影响;用单纱电子强力仪测量了纤维力学性能。结果表明:热拉伸倍数增大,PPS纤维取向度、结晶度增加,纤维的断裂强度增加,断裂伸长减小;拉伸倍数大于5,会出现较多毛丝和断头;控制热拉伸温度85~105℃,热定型温度100℃以上;纤维的结晶主要在热拉伸过程中基本完成,热定型进一步完善结晶结构;高温下氧气的存在,会使PPS纤维发生严重的氧化降解。  相似文献   

2.
以聚甲醛(POM)切片为原料,在200~210℃进行熔融纺丝制得POM长丝。利用DSC、Olympus偏光显微镜、单纱电子强力仪测定了POM纤维结晶度、熔点、取向度和纤维的机械性能;研究了后处理对POM纤维性能的影响以及拉伸对POM纤维耐酸碱性能的影响。结果表明:(1)POM纤维耐碱性良好,拉伸可以提高POM纤维结晶度、取向度、断裂强度以及耐酸性,但是使断裂伸长率减小;最佳拉伸温度在110℃左右,拉伸倍率在6~8之间。(2)热定形温度对POM纤维结晶度和熔点影响不大,延长热定形时间使POM结晶度、熔点降低;最佳热定形条件为在140℃下热定形4min。(3)经过拉伸热定形后的POM纤维的最大断裂强度和断裂伸长率分别为7.41cN/dtex和19.2%。  相似文献   

3.
首先采用熔融纺丝工艺制备聚甲醛(POM)初生纤维,然后采用二级热箱对初生纤维进行热拉伸及热定型,制备高强度POM纤维;根据POM初生纤维的熔融结晶曲线和等温结晶性能,确定了初生纤维的热拉伸温度;研究了拉伸倍数对纤维力学性能、结晶度和取向度的影响。结果表明:POM初生纤维的热拉伸温度即第一级热箱温度为155℃,热定型温度即第二级热箱温度为120℃;POM纤维的拉伸强度和结晶度随拉伸倍数的增大先增加后降低,初生纤维经9倍拉伸时均达到最大;POM纤维取向度随拉伸倍数的增加而增加,初生纤维经9倍拉伸后趋于稳定;POM初生纤维经9倍拉伸时,所得POM纤维的拉伸强度达到最大值为1.23 GPa,断裂伸长率为21.07%。  相似文献   

4.
采用对苯二甲酸二甲酯(DNT)、1,4-丁二醇(BDO)、聚乙二醇(PEG)和乳酸(LA)合成了聚对苯二甲酸丁二醇酯(PBT)/PEG/LA可降解聚醚酯,通过纺丝制备了PBT/PEG/LA共聚物纤维。结果表明:红外光谱和核磁共振分析所得聚合物为PBT/PEG/LA。PBT/PEG/LA共聚物在50℃真空预干燥5 h,80℃干燥5 h,控制纺丝温度高于聚醚酯熔点15~30℃可顺利纺丝,纤维质量良好。随着拉伸倍数、热定型温度或时间的增加,纤维的断裂强度提高.断裂伸长率下降。LA摩尔分数高,有利于纤维降解,但纤维熔点和断裂强度相应下降。  相似文献   

5.
以聚酯-聚酰胺共聚物/聚酰胺6(PET-PA/PA6)共混物为原料,采用熔融纺丝法制备了PET-PA/PA6共混纤维,讨论了拉伸热定型工艺对PET-PA/PA6共混纤维结构与性能的影响。结果表明:随拉伸倍数的增大,PET-PA/PA6共混纤维的断裂强度、取向度、结晶度以及沸水收缩率均明显增大;拉伸温度和热定型温度对PET-PA/PA6共混纤维的断裂强度和取向度的影响相对较小;随拉伸温度的升高,PET-PA/PA6共混纤维的断裂强度、取向度和结晶度呈现先增大后减小的趋势,并在拉伸温度为85℃时出现最大值;随热定型温度的升高,PET-PA/PA6共混纤维的结晶度增大、沸水收缩率减小;较佳的工艺条件为拉伸倍数1.6,拉伸温度85℃,热定型温度150℃。  相似文献   

6.
采用含水率小于50μg/g的聚苯硫醚(PPS)切片熔融纺丝生产PPS短纤维,对纺丝工艺条件进行了探讨。结果表明:控制PPS切片干燥温度120~140℃,干燥时间8~10 h,纺丝温度330℃,环吹风温度23~26℃,环吹风速度1.3~1.6 m/s,拉伸槽温度90~100℃,紧张热定型温度150~180℃,单体抽吸速度0.4 s/min,总拉伸倍数3.4~4.4,纺丝过程平稳,生产2.22 dtex PPS短纤维断裂强度大于等于4.2 cN/dtex,断裂伸长率为34.2%。  相似文献   

7.
对聚苯硫醚(PPS)切片性能进行了研究,利用纺粘无纺布实验机进行了气流拉伸PPS纤维的制备,并对其进行表征。结果表明:PPS切片熔点为280.8℃;在315℃时,PPS熔体流动性最好,熔体流动指数每10 min为158.7 g;PPS纤维直径最细可到30.5μm,随拉伸气流强度增大,纤维断裂强度和取向度都先增大后减小,断裂伸长率则相反,结晶度在小范围内有增大趋势;当拉伸气流强度为40 Hz时,PPS纤维断裂强度达3.28 cN/dtex。  相似文献   

8.
采用聚苯硫醚(PPS)切片进行高速纺丝制得PPS全拉伸丝(FDY)。探讨了纺丝温度、拉伸温度、拉伸倍数、纺丝速度和热辊(GR1,GR2)停留时间等工艺参数对PPS纤维力学性能的影响。结果表明:在90~110℃时,随着拉伸温度的提高,PPS FDY的相对强度逐渐降低;随着拉伸倍数的增大,或纺丝速度的增大,PPS纤维相对强度增大;当纺丝速度为3 000 m/min,拉伸倍数为2.5时,纤维在GR1停留时间为0.063~0.126 s存在最佳值,纤维相对强度为2.249 cN/dtex,纤维在GR2停留时间为0.019~0.069 s存在最佳值,纤维相对强度为2.223 cN/dtex。  相似文献   

9.
聚乙烯醇经干湿法凝胶纺丝制得初生纤维后,采用不同的两级后拉伸方法,制得单纤线密度在200-300dtex的高线密度PVA纤维。探讨了两级不同拉伸条件对PVA纤维结构和性能的影响。结果表明:一级拉伸热定型,有利于折叠链晶体的完善,一级拉伸后再经二级拉伸定型,纤维结晶更完善,水中软化点和纤维断裂强度分别达到116℃和11.5cN/dtex。  相似文献   

10.
以共聚醚酯(COPEET)及高收缩聚酯(HSPET)为原料,经熔融复合纺丝,制备了COPEET/HSPET初生纤维,将初生纤维经不同热定型温度处理及2倍拉伸后,制得COPEET/HSPET并列复合纤维;对所纺纤维进行热处理,研究了热定型温度、热处理工艺条件对COPEET/HSPET并列复合纤维结晶结构和热收缩性能的影响。结果表明:当热定型温度在150~180℃时,随着热定型温度升高,COPEET/HSPET复合纤维两组分的热焓差越大,其潜在热收缩性越强;180℃热定型所制得COPEET/HSPET复合纤维经90℃,30 min的热处理,热收缩率最大,达52.65%;热收缩率较大的COPEET/HSPET复合纤维卷曲波幅小、卷曲数多且形态较不规整;沸水处理后复合纤维的结晶度明显增加。  相似文献   

11.
采用切片纺丝路线,探讨采用不同特性黏数([η])的聚对苯二甲酸乙二醇酯(PET)切片制备超高强涤纶短纤维的可行性;并选用[η]较高的PET切片在切片纺工业化涤纶短纤维装置上通过纺丝温度、拉伸倍数、拉伸温度和热定型温度等工艺参数的调整优化,试生产超高强涤纶短纤维。结果表明:采用[η]较高的PET切片,选择合适的纺丝和后加工条件可以生产超高强涤纶短纤维;选择[η]为0.731 dL/g的PET切片为原料,在7500 t/a切片纺涤纶短纤维装置常规生产工艺基础上,调整纺丝螺杆温度为290~295℃、箱体温度为296~300℃,初生纤维断面不匀率小于等于1.21%,纺丝状况良好;调整水浴拉伸温度为70℃、总拉伸倍数为3.878、热定型温度为185℃,试生产的涤纶短纤维结晶度和非晶区取向有所增大,断裂强度达7.02 cN/dtex,达到了超高强纤维的要求。  相似文献   

12.
将特性黏数差为0.064 dL/g的高、低黏度聚对苯二甲酸乙二醇酯(PET)制备的双组分并列复合中空纤维原丝进行拉伸制得拉伸丝(DT丝),对DT丝的拉伸工艺进行了研究,得到了低中空高回弹三维螺旋卷曲纤维的最佳拉伸工艺条件.结果表明:DT丝的三维卷曲性能和拉伸方式、拉伸倍率及其分配密切相关,采取二步拉伸、一级拉伸倍率较大...  相似文献   

13.
以310 dtex/48 f聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丙二醇酯(PTT)复合预向丝为原料,经拉伸后得到PET/PTT复合纤维,探讨了拉伸工艺对PET/PTT复合纤维力学性能和卷曲性能的影响。结果表明:在卷绕速度为500 m/min,拉伸温度160℃,热定型温度150℃的条件下,随着拉伸倍数的增加,PET/PTT复合纤维的断裂强度、沸水收缩率、卷曲收缩率明显提高,断裂伸长率呈下降趋势,卷曲稳定度变化不明显;拉伸温度和热定型温度对PET/PTT复合纤维力学性能和卷曲性能的影响相对较小;拉伸过程中,控制拉伸倍数为1.95~2.00,拉伸温度为140~160℃,热定型温度为130~170℃,PET/PTT复合纤维性能较好。  相似文献   

14.
将一定质量比聚乳酸(PLA)与聚己内酯(PCL)进行共混,通过熔融纺丝得到PLA/PCL初生纤维,再经过热拉伸后得到PLA/PCL纤维;利用自制模具采用手工编织的方法制备了PLA/PCL管道支架;对PLA/PCL纤维及其支架的结构与性能进行了表征。结果表明:当PLA/PCL质量比为40:60时,PLA/PCL初生纤维的综合力学性能较好;拉伸温度和拉伸倍数对PLA/PCL初生纤维的力学性能影响较大,当拉伸温度为85℃、拉伸倍数为7时,所得的PLA/PCL纤维力学性能最好;在一定温度区间内,PLA/PCL支架的支撑力随着定型温度的升高而升高,合适的定型温度应为其玻璃化转变温度至130℃之间,制备的PLA/PCL支架具有良好的弯曲性、压缩性和支撑性能,能满足支架应用的需求。  相似文献   

15.
聚苯硫醚(PPS)由于其优异的耐热性能使其在高温滤袋中得到了广泛的应用。采用复合纺丝技术,制备PPS-聚酯(PET)皮芯复合纤维,并系统研究纤维成形的牵伸温度、拉伸比对复合纤维力学性能的影响。结果发现:控制皮芯纤维的纺丝速度小于1000 m/min,可制备出力学性能与PPS相近的PPS-PET复合纤维。在成形过程中,随着牵伸温度的提高,纤维的强度降低,断裂伸长率增大,沸水收缩率减小,强度和断裂伸长率在牵伸温度高于105℃时产生突变;经过180℃干热松弛处理48 h后,PPS-PET复合纤维的强力降低6%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号