首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide-m-chlorophenyl- hydrazone at 0.01 mM, mercury chloride at 0.05 mM, and sodium selenate at 1.0 mM almost completely inhibited H2S production from tetrathionate, but not from elemental sulfur.  相似文献   

2.
Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium.  相似文献   

3.
Diatomaceous earth is an effective carrier with a large surface area on which Thiobacillus ferrooxidans adsorbs, and enhances the oxidation rate of ferrous ions by the bacterium. The adsorption of T. ferrooxidans on diatomaceous earth was expressed by the Henry isotherm, and reached equilibrium within five minutes. The enhancement was due to an increase in the growth rate of the adsorbed cells, which were so active that their specific growth rate calculated using a Monod-type equation was higher than that of the free cells in the liquid phase.  相似文献   

4.
An acidophilic heterotrophic bacterium, designated as HIB4, having the ability to oxidize ferrous ion was newly isolated from a sample of an enrichment culture for iron-oxidizing bacteria, using the modified washed agarose/yeast extract (WAYE) medium with ferrous sulphate. The isolate HIB4 was an acidophilic, heterotrophic, mesophilic and gram-positive bacterium. Phylogenetically, it was classified under the genus Alicyclobacillus and was the closest to Alicyclobacillus disulfidooxidans SD-11 with 99.7% 16S rDNA homology. It grew and oxidized ferrous ion in the medium containing 0.02% (w/v) yeast extract. Yeast extract was an essential substrate for this bacterium because it could not grow or oxidize ferrous ion without yeast extract. However, a higher concentration of yeast extract inhibited the growth of HIB4, so that the optimum concentration of yeast extract for this bacterium to grow was 0.02% (w/v) at 0.08 mol/l of ferrous ion. On the other hand, ferrous ion oxidation occurred almost at the end of the bacterium's logarithmic growth phase and the isolate was able to grow without ferrous ion. These results denote that HIB4 did not obtain any energy from the ferrous ion oxidation and that HIB4 is an obligate heterotrophic and aerobic bacterium even though it oxidized ferrous ion. Also, HIB4 could not utilize any organic compounds, among the several organic chemicals used in this study, as a carbon source except yeast extract. These characteristics were completely different from these of A. disulfidooxidans SD-11 so that HIB4 might be a different species.  相似文献   

5.
Fifty iron-oxidizing bacteria isolated from natural environments were screened for resistance to mercuric ions (Hg2+). Thiobacillus ferrooxidans Funis 2-1, the strain found to show the greatest resistance to Hg2+ among the fifty isolates, gave a cell yield of 7.0 x 10(7) cells/ml after 8 d cultivation in an Fe2+-medium (pH 2.5) containing 0.7 microM Hg2+. Funis 2-1 volatilized 80% of the total mercury added to the medium over 8 d of cultivation. T. ferrooxidans AP19-3, more sensitive to Hg2+ than Funis 2-1, could not grow in an Fe2+-medium (pH 2.5) containing 0.7 microM Hg2+ even over a 28 d cultivation period. When resting cells of strains Funis 2-1 and AP19-3 were incubated for 3 h in a salt solution containing 0.7 microM Hg2+ (pH 3.0), 14.3% and 7.9% of the total mercury added to the reaction mixtures respectively, were volatilized. The activity of the mercuric reductase from Funis 2-1 was only 2.8 times higher than that of the enzyme from AP19-3. Since the markedly higher mercury resistance of Funis 2-1 compared with that of AP19-3 cannot be explained only by the level of the mercuric reductase activity, the levels of mercury resistance of iron oxidase and cytochrome c oxidase were studied. The 1 microM mercuric ions inhibited the 35% of iron-oxidizing activity from AP19-3. In contrast, the same concentration of Hg2+ did not inhibit the activity of iron oxidase from Funis 2-1. In the case of the cytochrome c oxidases purified from both strains, the 0.2 microM Hg2+ inhibited approximately 40% of cytochrome c oxidizing activity from AP19-3, on the contrary, the activity of the enzyme from Funis 2-1 was activated 1.8- and 1.2-fold, respectively, in the presence of 0.08 and 0.2 microM Hg2+. Since cytochrome c oxidase is one of the most important components of the iron-oxidizing system, these results indicate that both the existence of cytochrome c oxidase resistant to Hg2+ as well as that of mercuric reductase in the cells is responsible for the more rapid growth of Funis 2-1 than that of in an Fe2+-medium containing 0.7 microM Hg2+.  相似文献   

6.
The influence of high concentrations of ferric ions on the biochemical activity of Acidithiobacillus ferrooxidans was studied using intact cells. The specific oxidation rate of ferrous ions decreased with increasing ferric ion concentration. Lineweaver-Burk plots revealed typical competitive inhibition kinetics, because the slopes varied with the ferric ion concentration. A linear relationship between the slope and the square of the ferric ion concentration revealed that the iron-oxidizing enzyme system of A. ferrooxidans was competitively inhibited by about two molecules of ferric ion. The kinetic equation based on this inhibition model agreed with the experimental observation at a high ferric ion concentration where the bacterium is usually exposed in bioleaching and biooxidation plants.  相似文献   

7.
The rate and extent of pyrite oxidation by the iron-oxidizing bacteria Acidithiobacillus ferrooxidans was limited by the growth of the heterotrophic microbe Acidiphilium acidophilum. In batch systems containing a mixture of both organisms, the maximum zero-order rate of ferric iron accumulation was about 1.4 mg of Fe3+ L(-1) d(-1) as compared to 9.4 mg of Fe3+ L(-1) d(-1) for pure cultures of A. ferrooxidans under the same conditions. Pyrite oxidation was limited in cases where both cultures of organisms were initially present as well as situations where the heterotrophic organisms were added to established, pyrite-oxidizing systems containing A. ferrooxidans. Results also indicated that organic carbon remaining in solution following heterotrophic bacterial growth reduced the rate of abiotic pyrite oxidation by the ferric ion. Furthermore, a cell-free solution of the residual organic carbon resulted in a lag of A. ferrooxidans growth in soluble ferrous medium. The residual organic carbon solution that accumulated during the growth of Aph. acidophilum had a diverse molecular weight distribution, indicating that different compounds could be responsible for the inhibition of chemical pyrite oxidation and the A. ferrooxidans growth lag observed. Titration of dissolved copper ions with residual dissolved organic carbon originating from Aph. acidophilum cultures indicated that a metal complexation mechanism could be responsible for the lower rates of pyrite oxidation observed. These data suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation.  相似文献   

8.
The Langmuir adsorption parameter X(Am) of a mixture of culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans indicates that these bacteria have preferential and competitive adsorption sites on furnace dust. The constant K(A) of the mixture significantly larger than that of each component, suggesting that a synergistic effect may occur in the binding of these bacteria to the dust.  相似文献   

9.
Schwertmannite has previously been found in iron- and sulfate-rich mine waters at pH 2.8-4.5. In the present study, schwertmannite (Fe(8)O(8)(OH)(6)SO(4)) was shown to be the major mineral in a mine water treatment plant at pH 3, in which ferrous iron is mainly oxidized by bacteria belonging to the species Ferrovum myxofaciens. Strain EHS6, which is closely related to the type strain of Fv. myxofaciens, was isolated from the pilot plant and characterized as an acidophilic, iron-oxidizing bacterium. In contrast to the pilot plant, the mineral phase formed by a pure culture of Fv. myxofaciens EHS6 was a mixture of schwertmannite and jarosite (KFe(3)(SO(4))(2)(OH)(6)). In contrast to other reports of neutrophilic, iron-oxidizing bacteria, acidophilic microorganisms in the pilot plant and cultures of strain EHS6 did not show encrustation of the cell surface or deposition of minerals inside the cell, though a few cells appeared to be in contact with jarosite crystals. It was concluded that no direct biomineralization occurred in the pilot plant or in laboratory cultures. The lack of encrustation of bacterial cells in the pilot plant is considered advantageous since the cells are still able to get in contact with ferrous iron and the iron oxidation process in the mine water treatment plant can proceed.  相似文献   

10.
The iron-oxidizing bacterium Acidithiobacillus ferrooxidans SUG 2-2 is markedly resistant to mercuric chloride and can volatilize mercury (Hg0) from mercuric ion (Hg2+) under acidic conditions. To develop a microbial technique to volatilize and recover mercury from acidic and organic compound-containing mercury wastewater, which is usually produced in the course of everyday laboratory work in Okayama University, the effects of organic and inorganic chemicals on the mercury volatilization activity of A. ferrooxidans cells were studied. Among 55 chemicals tested, the mercury volatilization from a reaction mixture (pH 2.5) containing resting cells of SUG 2-2 (1 mg of protein) and mercury chloride (14 nmol) was strongly inhibited by AgNO3 (0.05 mM), K2CrO7 (1.0 mM), cysteine (1.0 mM), trichloroethylene (1 microM), and commercially produced detergents (0.05%). However, the strong inhibition by trichloroethylene and detergents was not observed when these organic compounds were chemically decomposed using Fenton's method before the treatment of the wastewater with SUG 2-2 cells. When 20 ml of water acidified with sulfuric acid (pH 2.5) containing ferrous sulfate (3%), diluted mercury wastewater (17.5 nmol of Hg2+) and SUG 2-2 cells (0.05 mg of protein) were incubated for 10 d at 30 degrees C, 47% of the total mercury in the wastewater was volatilized and recovered into a trapping reagent for metal mercury. However, when the organic compounds in the mercury wastewater were decomposed using Fenton's method and then treated with A. ferrooxidans cells, approximately 100% of the total mercury in the wastewater was volatilized and recovered.  相似文献   

11.
A tungsten-binding protein was purified from a plasma membrane preparation of the iron-oxidizing bacterium, Acidithiobacillus ferrooxidans AP19-3 in an electrophoretically homogenous state. The protein was composed of two subunits with apparent molecular masses of 12 and 20.7 kDa. The molecular mass of the native protein was estimated to be 26.4 kDa in the presence of 1.5% 1-o-octyl-D -glucopyranoside (OGL), indicating that the native tungsten-binding protein is a heterodimeric protein. The amounts of tungsten bound to 1 mg of plasma membranes of A. ferrooxidans AP19-3 and the purified tungsten-binding protein at pH 3.0 were 191 and 1506 mug, respectively. In contrast, the amounts of tungsten bound to 1 mg of albumin, aldolase, catalase, chymotrypsinogen A, ferritin, and ferredoxin at pH 3.0 were 13.1, 18.6, 12.8, 16.6, 11.4, and 6.1 mug, respectively. Incubation of the tungsten-binding protein for 1 h with 10 mM Na(2)WO(4) plus 10 mM metal ion, such as NaVO(3), Na(2)MoO(4), CuSO(4), NiSO(4), MnSO(4), CoSO(4), or CdCl(2), did not markedly affect the amount of tungsten bound to the tungsten-binding protein, suggesting that the protein specifically binds tungsten.  相似文献   

12.
Chromate (CrVI) reduction by sulfide was conducted in anaerobic batch experimental systems. The molar ratio of the reduced CrVI to the oxidized S(-II) was 1:1.5 during the reaction, suggesting that the product of sulfide oxidation was elemental sulfur. Under the anaerobic condition, the reaction was pseudo first order initially with respect to CrVI, but the rate was dramatically accelerated at the later stage of the reaction. The rate acceleration was due to catalysis by elemental sulfur nanoparticles; dissolved species such as monomeric elemental sulfur and polysulfides appeared to be ineffective catalysts. Elemental sulfur nanoparticles were capable of adsorbing sulfide and such adsorbed sulfide exhibited much higher reactivity toward CrVI reduction than the aqueous-phase sulfide, resulting in the observed rate acceleration. Kinetic data under various reactant concentrations can be represented by the following empirical kinetic equation: -d[CrVI]/dt = k1 [CrVI][H2S]0.63 + k3[CrVI][triple bond S--SH]0.57. The first term on the right-hand side corresponds to the noncatalytic pathway, with k1 = 1.0 x 10(-3) (microM)(-0.63) min(-1) at pH 7.60 and 8.2 x 10(-5) (microM)-0.63 min(-1) at pH 8.10. The second term, k3[CrVI][triple bond S--SH]b, is the catalytic term with [triple bond S--SH] representing the adsorbed concentration of sulfide on the elemental sulfur nanoparticles (microM). The catalytic term is more important at the later stage of the reaction, as indicated by the observed kinetics and the enhancement of the reaction rate by externally added elemental sulfur nanoparticles. At pH 8.10, k3 = 0.0057 (microM)(-0.57) min(-1).  相似文献   

13.
Acidithiobacillus ferrooxidans MON-1 which is highly resistant to Hg2+ could grow in a ferrous sulfate medium (pH 2.5) with 0.1 microM p-chloromercuribenzoic acid (PCMB) with a lag time of 2 d. In contrast, A. ferrooxidans AP19-3 which is sensitive to Hg2+ did not grow in the medium. Nine strains of A. ferrooxidans, including seven strains of the American Type Culture Collection grew in the medium with a lag time ranging from 5 to 12 d. The resting cells of MON-1, which has NADPH-dependent mercuric reductase activity, could volatilize Hg0 when incubated in acidic water (pH 3.0) containing 0.1 microM PCMB. However, the resting cells of AP19-3, which has a similar level of NADPH-dependent mercuric reductase activity compared with MON-1, did not volatilize Hg0 from the reaction mixture with 0.1 microM PCMB. The activity level of the 11 strains of A. ferrooxidans to volatilize Hg0 from PCMB corresponded well with the level of growth inhibition by PCMB observed in the growth experiments. The resting cells of MON-1 volatilized Hg0 from phenylmercury acetate (PMA) and methylmercury chloride (MMC) as well as PCMB. The cytosol prepared from MON-1 could volatilize Hg0 from PCMB (0.015 nmol mg(-1) h(-1)), PMA (0.33 nmol mg(-1) h(-1)) and MMC (0.005 nmol mg(-1) h(-1)) in the presence of NADPH and beta-mercaptoethanol.  相似文献   

14.
Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight in the reaction pathways and kinetics. We carried out experiments with gas lift bioreactors inoculated with haloalkaliphilic sulfide-oxidizing bacteria. At oxygen-limiting levels, that is, below an O(2)/H(2)S mole ratio of 1, sulfide was oxidized to elemental sulfur and sulfate. We propose that the bacteria reduce NAD(+) without direct transfer of electrons to oxygen and that this is most likely the main route for oxidizing sulfide to elemental sulfur which is subsequently oxidized to sulfate in oxygen-limited bioreactors. We call this pathway the limited oxygen route (LOR). Biomass growth under these conditions is significantly lower than at higher oxygen levels. These findings emphasize the importance of accurate process control. This work also identifies a need for studies exploring similar pathways in other sulfide oxidizers such as Thiobacillus bacteria.  相似文献   

15.
Iron oxyhydroxides as the efficient scavengers for heavy metals have been extensively investigated in iron-rich acid sulfate waters in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans, an especially important chemolithoautotroph for bioleaching and desulfurization of coal). In this study, we observed the morphology and elemental composition of cells in stationary phase and examined the dynamic variation of iron oxyhydroxides produced in cultures of A. ferrooxidans incubated in modified 9K medium initially including 0.15 M of ferrous iron, in the absence/presence of 0.2 M of chloride (NaCl/FeCl(2)). Results showed that chloride acclimation had little effect on cellular morphology and elemental uptake that was mainly related to culture medium. Furthermore, schwertmannite with the typical morphology of aggregated spheres covered by some "pincushions" was precipitated first in bacterial cultures in the favorable pH range of 2.9 ± 0.1 to 2.6 ± 0.1. Some of schwertmannite could be transformed to lozenge-shaped jarosite, due to a successively decreasing of pH values. However, the jarosite transformation represented a lag period of 5 and 4 days in the chloride-rich cultures with sulfate at a low level, compared to the cultures with sulfate at a high level, which could be attributed to the influence of sulfate requirement and chloride acclimation.  相似文献   

16.
Sulfur is almost insoluble in water at ambient temperatures, and therefore polysulfide (Sn2−) has been considered as a possible intermediate that is used directly by bacteria in sulfur respiration. Sulfur-reducing reductases have been purified and characterized from a few sulfur reducers. However, polysulfide reduction has only been confirmed in Wolinella succinogenes. In our previous study, the direct production of hydrogen sulfide from polysulfide was confirmed by an enrichment culture obtained from natural samples under sulfate-reducing conditions. The present study attempted to isolate and identify polysulfide-reducing bacteria from the enrichment cultures. Almost all the isolated strains were classified into the genus Clostridium, based on 16S rRNA gene sequence analysis. The isolates, and some closely related strains, were able to reduce polysulfide to hydrogen sulfide. During production of 1 mol of hydrogen sulfide, approximately 2 mol of lactate was converted to acetate. Thus, dissimilatory polysulfide reduction occurred using lactate as an electron donor. The ability to reduce elemental sulfur was also examined with the isolates and the related strains. Although elemental sulfur reducing strains can reduce polysulfides, not all polysulfide-reducing strains can reduce elemental sulfur. These results demonstrate that the conversion of elemental sulfur to polysulfide seems to be important in the reduction process of sulfur.  相似文献   

17.
3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.  相似文献   

18.
Pyrite is a key mineral in the global biogeochemical cycles of sulfur and iron, yet its anaerobic microbial oxidation has eluded geochemists and microbiologists for decades. Recent reports indicated that anaerobic oxidation of pyrite is occurring, but the mechanism remains unclear. Here, we provide evidence for the capability of Thiobacillus denitrificans to anaerobically oxidize a putatively nanosized pyrite particle fraction with nitrate as electron acceptor. Nanosized pyrite was readily oxidized to ferric iron and sulfate with a rate of 10.1 μM h(-1). The mass balance of pyrite oxidation and nitrate reduction revealed a closed recovery of the electrons. This substantiates a further "missing lithotrophy" in the global cycles of sulfur and iron and emphasizes the high reactivity of nanominerals in the environment.  相似文献   

19.
The rate of iron (II) oxidation by sulphur-grown Thiobacillus ferrooxidans cells decreased when the pH of the original growth medium was lowered. This behaviour was observed even after shifting from the original growth pH to a higher pH. After being suspended in medium at a pH higher than the growth pH, sulphur-grown cells could leach covellite at a similar initial rate to iron-grown cells. Sulphur-grown cells exhibited a long lag phase when the original growth pH was low. These results were correlated with the number of protons associated with the cell surface, rather than with cell hydrophobicity or cell capacity to attach to solid particles. Sulphur-grown cells grown in very acidic media (without pH control) were not able to oxidize iron (II) or leach covellite even after shifting to a high pH.  相似文献   

20.
The effect of oxygen ingress into sour water containing dissolved sulfide on the production of sulfur and polysulfide (S-PS) and associated iron corrosion was investigated. Biotic (active SRB present), abiotic (autoclaved SRB present), and chemical (no bacteria present) conditions were compared. Under biotic conditions formation of S-PS was only seen at a high ratio of oxygen to sulfide (R(OS)) of 1 to 2.4. General corrosion rates increased 10-fold to 0.10 mm/yr under these conditions. Under abiotic and chemical conditions S-PS formation increased over the entire range of R(OS) with general corrosion rates reaching 0.06 mm/yr. Although general corrosion rates were thus highest under biotic conditions, biotically corroded coupons showed much less pitting corrosion. Maximum pit depth increased to 40-80 μm with increasing R(OS) for coupons incubated for 1 month under abiotic or chemical conditions but not for biotically incubated coupons (10 μm). This appeared to be related to the properties and size of the sulfur formed, which was hydrophobic and in excess of 10 μm under chemical or abiotic conditions and hydrophilic and 0.5 to 1 μm under biotic conditions. Hence, perhaps contrary to expectation, SRB lowered pitting corrosion rates under conditions of oxygen ingress due to their ability to respire oxygen and produce a less aggressive form of sulfur. Microbial control, which is usually required in sour systems, may be counterproductive under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号