首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macke A  Mishchenko MI 《Applied optics》1996,35(21):4291-4296
We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 μm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.  相似文献   

2.
We investigate the errors associated with the use of circular cylinders as surrogates for hexagonal columns in computing the optical properties of pristine ice crystals at infrared (8-12-microm) wavelengths. The equivalent circular cylinders are specified in terms of volume (V), projected area (A), and volume-to-area ratio that are equal to those of the hexagonal columns. We use the T-matrix method to compute the optical properties of the equivalent circular cylinders. We apply the finite-difference time-domain method to compute the optical properties of hexagonal ice columns smaller than 40 microm. For hexagonal columns larger than 40 microm we employ an improved geometric optics method and a stretched scattering potential technique developed in previous studies to calculate the phase function and the extinction (or absorption) efficiency, respectively. The differences between the results for circular cylinders and hexagonal columns are of the order of a few percent. Thus it is quite reasonable to use a circular cylinder geometry as a surrogate for pristine hexagonal ice columns for scattering calculations at infrared (8-12-microm) wavelengths. Although the pristine ice crystals can be approximated as circular cylinders in scattering calculations at infrared wavelengths, it is shown that optical properties of individual aggregates cannot be well approximated by those of individual finite columns or cylinders.  相似文献   

3.
Sun W  Loeb NG  Videen G  Fu Q 《Applied optics》2004,43(9):1957-1964
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional microroughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 microm, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than approximately 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than approximately 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than approximately 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.  相似文献   

4.
The Mueller matrix (M) corresponding to the phase matrix in the backscattering region (scattering angles ranging from 175 degrees to 180 degrees) is investigated for light scattering at a 0.532-microm wavelength by hexagonal ice crystals, ice spheres, and water droplets. For hexagonal ice crystals we assume three aspect ratios (plates, compact columns, and columns). It is shown that the contour patterns of the backscattering Mueller matrix elements other than M11, M44, M14, and M41 depend on particle geometry; M22 and M33 are particularly sensitive to the aspect ratio of ice crystals. The Mueller matrix for spherical ice particles is different from those for nonspherical ice particles. In addition to discriminating between spherical and nonspherical particles, the Mueller matrix may offer some insight as to cloud thermodynamic phase. The contour patterns for large ice spheres with an effective size of 100 microm are substantially different from those associated with small water droplets with an effective size of 4 microm.  相似文献   

5.
Baran AJ 《Applied optics》2003,42(15):2811-2818
The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models.  相似文献   

6.
We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T -matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.  相似文献   

7.
Abstract

Light scattering by long finite cylinders is applied for particle characterization, investigation of scattering and absorption properties of interstellar dust, ice crystals and many other fields. In recent years many methods have been used to solve this problem, but usually their applicability is restricted to aspect ratios of about 10. In this paper a renewed algorithm of the discrete sources method is described, which allows computer simulation of light scattering by highly elongated cylinders with aspect ratios up to 100 and length up to 40 μm.  相似文献   

8.
Kuik F  de Haan JF  Hovenier JW 《Applied optics》1994,33(21):4906-4918
We consider two topics pertaining to light scattering by circular cylinders. (A) Scattering properties of cylinders with increasing aspect ratio are studied. It is shown that the solution for finite cylinders does not converge to the solution for infinitely long cylinders if the aspect ratio increases. This is due to differences in the treatment of diffraction for finite and infinite cylinders. (B) Finite cylinders have sharp edges, so their scattering properties differ from those of spheroids having the same aspect ratio. To illustrate these differences we present scattering matrix elements of cylinders and spheroids for a large set of aspect ratios. To handle the large amount of data, the scattering matrix elements as functions of aspect ratio and scattering angle are presented in so-called three-dimensional figures.  相似文献   

9.
Baran AJ  Yang P  Havemann S 《Applied optics》2001,40(24):4376-4386
We calculated the scattering and absorption properties of randomly oriented hexagonal ice columns using T-matrix theory, employing analytic orientation averaging, and the finite-difference time-domain method, which uses a numerical procedure to simulate random orientation. The total optical properties calculated are the extinction efficiency, absorption efficiency, single-scattering albedo, and the asymmetry parameter. The optical properties are calculated at the wavelengths of 0.66, 8.5, and 12 mum, up to a size parameter of 20 at 0.66 mum and 15 at the two other wavelengths. The phase-matrix elements P11, P12, and P22 are also calculated and compared, up to a size parameter of 20 at 0.66 mum and 15 at 12.0 mum. The scattering and absorption solutions obtained from the two independent electromagnetic methods are compared and contrasted, as well as the central processing unit time and memory load for each size parameter. It is found that the total optical properties calculated by the two methods are well within 3% of each other for all three wavelengths and size parameters. In terms of the phase-matrix elements it is found that there are some differences between the T-matrix and the finite-difference time-domain methods appearing in all three elements. Differences between the two methods for the P11 element are seen particularly at scattering angles from approximately 120 degrees to 180 degrees ; and at the scattering angle of 180 degrees , relative differences are less than 16%. At scattering angles less than 100 degrees , agreement is generally within a few percent. Similar results are also found for the P12 and P22 elements of the phase matrix. The validity of approximating randomly oriented hexagonal ice columns by randomly oriented equal surface area circular cylinders is also investigated in terms of the linear depolarization ratio.  相似文献   

10.
Mishchenko MI  Travis LD 《Applied optics》1994,33(30):7206-7225
We report the results of an extensive study of the scattering of light by size and size-shape distributions of randomly oriented prolate and oblate spheroids with the index of refraction 1.5 + 0.02i typical of some mineral terrestrial aerosols. The scattering calculations have been carried out with Waterman's T-matrix approach, as developed recently by Mishchenko [J. Opt. Soc. Am. A 8, 871 (1991); Appl. Opt. 32, 4562 (1993)]. Our main interest is in light scattering by polydisperse models of nonspherical particles because averaging over sizes provides more realistic modeling of natural ensembles of scattering particles and washes out the interference structure and ripple typical of monodisperse scattering patterns, thus enabling us to derive meaningful conclusions about the effects of particle nonsphericity on light scattering. Following Hansen and Travis [Space Sci. Rev. 16, 527 (1974)], we show that scattering properties of most physically plausible size distributions of randomly orientednonspherical part cles depend primarily on the effective equivalent-sphere radius and effective variance of the distribution, the actual shape of the distribution having a minor influence. To minimize the computational burden, we have adopted a computationally convenient power law distribution of particle equivalent-sphere radii n(r) α r(-3),r(1) ≤ r≤r(2). The effective variance of the size distribution is fixed at 0.1, and the effective size parameter continuously varies from 0 to 15. We present results of computer calculations for 24 prolate and oblate spheroidal shapes with aspect ratios from 1.1 to 2.2. The elements of the scattering matrix for the whole range of size parameters and scattering angles are displayed in the form of contour plots. Computational results are compared with analogous calculations for surface-equivalent spheres, and the effects of particle shape on light scattering are discussed in detail.  相似文献   

11.
The T-matrix method, which is also known as the null field method (NFM) or extended boundary condition method (EBCM), has established itself as a well known and highly regarded method for calculating light scattering by non-spherical particles. Its biggest advantage is the possibility to obtain all information about the scattering characteristics of the particle and to store it into one matrix. This enables one to do additional investigations with low efforts. Unfortunately the standard NFM fails to converge for particles with extremely non-spherical particle shapes, like long cylinders or coin-like flat cylinders. In this paper we investigate light scattering by finite particles in the form of an oblate disc sphere, which can be described as flat cylinders with a rounded edge. We use an advanced form of the T-matrix method—the null field method with discrete sources (NFM-DS). By presenting light scattering results we would like to demonstrate the potential this advanced NFM-DS offers. It allows one to calculate particle shapes with aspect ratios (relation between radius and thickness of the particle) up to 100:1 and size parameters (relation between radius and wavelength) up to 30.  相似文献   

12.
Barkey B  Liou KN 《Applied optics》2008,47(13):2533-2540
We present laboratory results of the 0.68 microm visible (VIS) and 1.617 microm near infrared (NIR) reflectances typically used for inferring optical depth and ice crystal size from satellite radiometers, from ice clouds generated in a temperature controlled column cloud chamber. Two types of ice crystals were produced in this experiment: small columns and dendrites with mean maximum dimensions of about 17 and 35 microm. Within experimental uncertainty, the measured reflectances from ice clouds at both wavelengths agree reasonably well with the theoretical results computed from the plane-parallel adding-doubling method for radiative transfer using the measured ice particle morphology. We demonstrate that laboratory scattering and reflectance data for thin ice clouds with optical depths less than 0.4 can be used for validation of the thin cirrus optical depth and ice crystal size that have been routinely retrieved from the satellite VIS-NIR two channel pair.  相似文献   

13.
How big should hexagonal ice crystals be to produce halos?   总被引:1,自引:0,他引:1  
Mishchenko MI  Macke A 《Applied optics》1999,38(9):1626-1629
It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result.  相似文献   

14.
Stramski D  Sedlák M 《Applied optics》1994,33(21):4825-4834
Small particles ranging from approximately 0.1 μm to several micrometers in size, which include detrital material, bacteria, and other planktonic microorganisms, make a significant contribution to light scattering in the upper ocean. The scattering properties of these particles are strongly dependent on their size, which is difficult to measure in the submicrometer range with commonly used electronic resistive counters and microscopic techniques. We examined the size of small marine particles by application of the dynamic light scattering (DLS) method. In this method the time-dependent autocorrelation function of scattered intensity by particles undergoing Brownian motion provides information about the size of particles. The samples were collected in clear oceanic waters off the coast of Southern California. The mean hydrodynamic diameter of particles, determined from the DLS measurements at a scattering angle of 45°, was 0.54μ m. This indicates that the major contribution to scattering at this angle comes rom submicrometer particles. We also described an inverse method for estimating the general slope of the size distribution of small marine particles from the mean hydrodynamic diameter. This method is based on calculations of the size distribution weighted by distribution from Mie theory and assumes that a power-law approximation represents the actual particle scattered intensity. These calculations suggested that particulate assemblage in our seawater samples was best characterized by a differential size distribution with a slope of -4.35. This estimation was supported by independent measurements of particle size distribution and the spectral beam attenuation coefficient taken from the same samples as those used for the DLS measurements. We also demonstrated that multiangle DLS measurements may be used to determine the representative value of the refractive index of particles.  相似文献   

15.
16.
We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that platelike and needlelike particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.  相似文献   

17.
We investigate ultrasonic attenuation as a nondestructive determination of grain-size distributions. Previous work showed power-law relationships between the wavelength dependence of ultrasonic attenuation and a single power-law grain-size distribution, along with experimental verification. The work presented here further validates the previously reported relationship for single power-law grain-size distributions, and generalizes the relationships to cases where the grain-size distribution follows multiple power-laws. Roney's generalized approach to ultrasonic attenuation is used. Numerical results are presented for the single power-law and multiple power-law cases. The attenuation exponents computed from the numerical calculations correspond well with theoretical expectations. For wavelengths greater than all the grain sizes, Rayleigh scattering dominates and the attenuation exponent approaches 4. For single power-laws and wavelengths between the smallest and largest grain size, the attenuation exponent equals the grain-size distribution exponent. When multiple power-laws are used to describe the grain-size distribution, the attenuation exponent is a combination of the grain-size distribution exponent, and therefore cannot be directly measured from the attenuation curve  相似文献   

18.
Zhao F  Gong Z  Hu H  Tanaka M  Hayasaka T 《Applied optics》1997,36(30):7992-8001
In this study we attempt to determine the aerosol complex index of refraction and size distribution from scattering measurements of polarized light. We illustrate that the scattering matrix elements M(2)(100 degrees ) and D(21) (150 degrees ) can be selected as an optimum set of matrix elements for determination of the complex index of refraction. We also illustrate that errors increase if we include insensitive scattering matrix elements in the determination of the complex index of refraction. A method is developed for the simultaneous determination of the complex index of refraction and the size distribution. In our method, we selected two sets of matrix elements, M (2) (100 degrees ) and D (21) (150 degrees ), for the determination of the complex index of refraction and others, which are much less sensitive to the complex index of refraction than M(2) (100 degrees ) and D(21) (150 degrees ), for the determination of the size distribution, based on their sensitivity analyses. A modified inversion library algorithm is adopted to solve the coupled system. Numerical experiments show that both the complex index of refraction and the size distribution can be determined with reasonable accuracy when we apply our method to scattering measurements of polarized light.  相似文献   

19.
McNeil LE  Hanuska AR  French RH 《Applied optics》2001,40(22):3726-3736
This scattering of light by small particles embedded in a continuous transparent medium is influenced not only by the bulk optical properties of the particles and the medium but also by the size, shape, and spatial arrangement of the particles-that is, by the microstructure. If the particles are close together, as in agglomerated coatings or stereolithographic suspensions, interactions between the radiation fields of adjacent particles can lead to variations in the magnitude and spatial arrangement of the scattered light in the near and the far field, which can affect the color and hiding power of a coating, the cure depth and homogeneity in stereolithography, and the threshold intensity for stimulated emission in random lasers. Our calculations of the near- and the far-field scattering distribution for 200-nm TiO(2) spheres in pairs of various orientations and in an ordered array of five particles show that, depending on the orientation of the particles with respect to the incident light, these interactions can either increase or decrease the scattering efficiency, the isotropy of the scattering, and the magnitude of the electric field strength within the matrix and the particles. In the mid-visible range, two particles in line increase the backscattering fraction by 28% and the scattering strength by 38% over that of a single particle, whereas if the particles are in the diagonal configuration the backscattering fraction and scattering strength are actually reduced by addition of the second particle. At shorter or longer wavelengths the backscattering fraction is reduced regardless of the location of the second particle, by as much as 60% when five particles are arranged in the zigzag configuration. These results are surprising in that it is generally assumed that multiple scattering enhances backscattering. Simple models of multiple scattering or scattering of two particles as a single, larger particle are inadequate to explain these results.  相似文献   

20.
Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error <50 nm). Numerical calculations revealed that a transmission peak observed at the upper frequency edge of the bandgap originated from the excitation of a resonant guided mode in the defective layers. Despite their importance, detailed discussions on the defective modes of 3D photonic crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号