首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We applied a photoacoustic spectroscopy technique to isotope ratio measurements of (16)O and (18)O in water-vapor samples, using a pulsed tunable dye laser pumped by a Nd:YAG laser. The fourth overtone bands (4nu(OH)) of water molecules near 720 nm were investigated. We identified the absorption lines of H(2)(16)O and H(2)(18)O in the photoacoustic spectra that we measured by using an (18)O-enriched water sample and the HITRAN database. We measured the difference in the (18)O/(16)O isotope ratios for normal distilled water and Antarctic ice, using the photoacoustic method. The value obtained for the difference between the two samples is delta(18)O = -32 ? 16 per thousand, where the indicated deviation was a 1varsigma value among 240-s measurements, whereas the value measured with a conventional isotope mass spectrometer was delta(18)O = -28 ? 2 per thousand. This method is demonstrated to have the potential of a transportable system for in situ and quick measurements of the H(2)(18)O/H(2)(16)O ratio in the environment.  相似文献   

2.
Three different KNO3 salts with delta18O values ranging from about -31 to +54 per thousand relative to VSMOW were used to compare three off-line, sealed glass tube combustion methods (widely used for isotope studies) with a more recently developed on-line carbon combustion technique. All methods yielded roughly similar isotope ratios for KNO3 samples with delta18O values in the midpoint of the delta18O scale near that of the nitrate reference material IAEA-NO-3 (around +21 to +25 per thousand). This reference material has been used previously for one-point interlaboratory and intertechnique calibrations. However, the isotope ratio scale factors by all of the off-line combustion techniques are compressed such that they are between 0.3 and 0.7 times that of the on-line combustion technique. The contraction of the 6180 scale in the off-line preparations apparently is caused by O isotope exchange between the sample and the glass combustion tubes. These results reinforce the need for nitrate reference materials with delta18O values far from that of atmospheric O2, to improve interlaboratory comparability.  相似文献   

3.
We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative (2)H/(1)H, (17)O/(16)O, and (18)O/(16)O isotope abundance ratios in water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 μL of liquid) in the 3-μm spectral region. It thus avoids the laborious chemical preparations of the sample that are required in the case of the conventional isotope ratio mass spectrometer measurement. The precision of the spectroscopic technique is shown to be 0.7‰ for δ(2)H and 0.5‰ for δ(17)O and δ(18)O (δ represents the relative deviation of a sample's isotope abundance ratio with respect to that of a calibration material), while the calibrated accuracy amounts to about 3 and 1‰, respectively, for water with an isotopic composition in the range of the Standard Light Antarctic Precipitation and Vienna Standard Mean Ocean Water international standards.  相似文献   

4.
We have developed a new technique in which a solid reagent, cobalt(III) fluoride, is used to prepare oxygen gas for isotope ratio measurement from water derived either from direct injection or from the pyrolysis of solid samples. The technique uses continuous flow, isotope ratio monitoring, gas chromatography/mass spectrometry (irmGC/MS) to measure the delta18O and delta17O of the oxygen gas. Water from appropriate samples is evolved by a procedure of stepped pyrolysis (0-1000 degrees C, typically in 50 degrees C increments) under a flowing stream of helium carrier gas. The method has considerable advantages over others used for water analysis in that it is quick; requires only small samples, typically 1-50 mg of whole rock samples (corresponding to approximately 0.2 micromol of H2O); and the reagent is easy and safe to handle. Reproducibility in isotope ratio measurement obtained from pyrolysis of samples of a terrestrial solid standard are delta18O +/- 0.54, delta17O +/- 0.33, and delta17O +/- 0.10/1000, 1sigma in all cases. The technique was developed primarily for the analysis of meteorites, and the efficiency of the method is illustrated herein by results from water standards, solid reference materials, and a sample of the Murchison CM2 meteorite.  相似文献   

5.
Newly available gas analyzers based on off-axis integrated cavity output spectroscopy (OA-ICOS) lasers have been advocated as an alternative to conventional isotope-ratio mass spectrometers (IRMS) for the stable isotopic analysis of water samples. In the case of H2O, OA-ICOS is attractive because it has comparatively low capital and maintenance costs, the instrument is small and field laboratory portable, and provides simultaneous D/H and 16O/18O ratio measurements directly on H2O molecules with no conversion of H2O to H2, CO, or H2/CO2-water equilibration required. Here we present a detailed assessment of the performance of a liquid-water isotope analyzer, including instrument precision, estimates of sample memory and sample mass effects, and instrumental drift. We provide a recommended analysis procedure to achieve optimum results using OA-ICOS. Our results show that, by using a systematic sample analysis and data normalization procedure routine, measurement accuracies of +/-0.8 per thousand for deltaD and +/-0.1 per thousand delta18O are achievable on nanoliter water samples. This is equivalent or better than current IRMS-based methods and at a comparable sample throughput rate.  相似文献   

6.
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.  相似文献   

7.
Bao H  Thiemens MH 《Analytical chemistry》2000,72(17):4029-4032
With the observation of mass-independent isotopic anomalies in numerous atmospheric molecules, the ability to measure both delta17O and delta18O in a range of samples is needed. Sulfate oxygen isotopic studies conventionally report only delta18O values. Recent findings indicate that sulfate delta17O and delta18O values, particularly the delta17O value (= delta17O - (0.52)(delta18O)), can provide independent information on the origin, mixing, and transformation of sulfate in the atmospheric and surface environments, which is not resolvable by only delta18O measurements. Existing methods for analyzing sulfate delta17O and delta18O are extremely laborious and demand high-purity BrF5. Here we report a novel method of generating O2 directly from Barite (BaSO4) for simultaneous analysis of delta18O and delta17O by isotope ratio mass spectrometry (IRMS). The method utilizes a CO2-laser fluorination system that can also be used to quantitatively generate O2 from silicates and oxides. Partial but consistent oxygen yields from BaSO4 are obtained for samples >4 mg. Correction factors of +9.4% for delta18O and 4.89% for delta17O are obtained, and there is no deviation in the delta17O value due to the nonquantitative O2 generation. The system may process more than a dozen samples per working day, with analytical error of +/-0.05% and +/-0.8% for delta17O and delta18O, respectively. This new method is ideal for studies emphasizing an accurate sulfate delta17O value.  相似文献   

8.
The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections.  相似文献   

9.
We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate. (1) Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N20 analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N20 product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 microM NO3-), lack of interference by other solutes, and ease of sample preparation.  相似文献   

10.
氧离子束辅助激光淀积生长ZnO/Si的XPS探究   总被引:1,自引:0,他引:1  
为了探究ZnO/Si内部化学成分及有关信息,用氧离子束辅助(O+-assisted)脉冲激光淀积(PLD)法在不同实验条件下生长成ZnO/Si(111)样品.利用X射线光电子能谱(XPS)对长成的ZnO/Si异质结构进行了异位测试.通过对O1s峰及其肩状结构进行拟合、分析,得到了原子数密度比n(O)∶n(Zn),进而探究了原子数密度比与生长质量的关系.结果表明,用氧离子束辅助PLD法,可在较低的衬底温度190℃和适当O+束流条件下,生长出正化学比接近于1,且c轴单一取向最佳的ZnO/Si薄膜.用氧离子束辅助PLD淀积法生长ZnO薄膜,可以改善缺氧状况,能提供一个富氧环境.  相似文献   

11.
范秀娟  李欣 《新型炭材料》2012,27(2):111-116
通过FeCl2.4H2O和FeCl3.6H2O混合共沉淀,合成平均粒径为6 nm和10 nm的Fe3O4纳米粒子。然后将两种Fe3O4纳米粒子分别与经HNO3氧化处理的多壁碳纳米管(MWCNTs)置于乙醇水溶液(水和乙醇的体积比为1∶1)中,在超声波作用下制备Fe3O4/MWCNT复合材料。用高分辨透射电子显微镜、X-射线光电子能谱、振动样品磁强计、X射线衍射仪、热重分析仪对所制备的Fe3O4/MWCNT复合材料进行表征。结果表明:由6 nm和10 nm Fe3O4纳米粒子所制备的Fe3O4/MWCNT复合材料中,Fe3O4的质量分数分别为26.65%和29.3%,相应的磁饱和强度分别为16.5 emug-1和7.5 emug-1。  相似文献   

12.
The Al2O3 nanocondensates of spinel-type related structures, i.e., gamma- and theta-type with a significant internal compressive stress via pulsed laser ablation in water were subjected to prolonged dwelling in water to form columnar bayerite plates for further transformation as platy gamma-Al2O3. Transmission electron microscopic observations indicated the gamma-Al2O3 follows the crystallographic relationship (100)b//(011)gamma; [001]b//[111]gamma with relic bayerite (denoted as b). The gamma-Al2O3 also shows {111} twin/faults and rock salt-type domains due to dehydroxylation of bayerite which involves {1111} shuffling and disordering of the Al ions in the octahedral and tetrahedral sites. The combined evidences of X-ray photoelectron spectroscopy, vibrational spectroscopy and UV-visible absorbance indicated that the H+, Al+ and Al2+ co-doped bayerite and gamma-Al2O3 composite plates have a minimum band gap as low as approximately 5 eV for potential catalytic and electro-optical applications in water environment.  相似文献   

13.
In this paper, a two-step synthesis method for preparing Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals is introduced. Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals were prepared by combining an autocombustion process with a low temperature solid state reaction. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) and fluorescence decay were employed to characterize the prepared samples. The results of XRD, TEM and EDS indicated that the products prepared by this method were not a mixture of Y2O3:Eu3+ and YOF:Eu3+ nanocrystals, but Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals. Compared with Y2O3:Eu3+ nanocrystals, a 20% increment in luminescence intensity was observed in the Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals, thus suggesting that coating with a YOF:Eu3+-shell can efficiently block the nonradiative relaxation channels that are induced by surface defect states.  相似文献   

14.
We determined the respective pressure-broadening coefficients of HCl, HBr, Cl2, and O2 (expressed relative to that of the reference gas N2) for the (v1,v2,v3)J(Ka,Kc) = (0,0,0)3(0,3) --> (1,0,1)2(0,2) rovibrational transition of H2 16O that occurs at 1.39253 microm. The experiment used a continuous-wave cavity ring-down spectroscopy analyzer to measure the peak absorption losses as a function of added moisture concentration. The measured pressure-broadening coefficients for HCl, HBr, Cl2, and O2 are, respectively, 2.76, 2.48, 1.39, and 0.49 times that of the N2 pressure-broadening coefficient, and detection limits for water vapor range from 0.22 nmol mol(-1) for O2 matrix gas to 2.3 nmol mol(-1) for HBr matrix gas. The degradation of the detection limit (relative to the N2 matrix gas) is ascribed to a pressure-broadening-induced reduction in peak absorption cross section and to elevated background loss from the matrix gas.  相似文献   

15.
The isotopic composition of water in hydrated minerals, such as gypsum and jarosite, has numerous applications in studies of recent climate change, ore formation, and soil development. However, oxygen and hydrogen isotope analysis of water of crystallization is currently a complex procedure. Commonly used techniques involve offline extraction of water from hydrated minerals and subsequent isotope analysis. Such methods are time-consuming, require relatively large sample sizes, and the stepwise procedure has to be carried out with extreme caution to avoid erroneous results. We present a novel online method for the oxygen and hydrogen isotope analysis of water of crystallization in hydrous minerals. Gypsum (CaSO 4.2H 2O) samples, 2 mg in size, are reacted in a simply modified carbon reducing furnace connected to a continuous-flow mass spectrometer system. Analysis time is less than 10 min/sample. The precision (2 std dev mean) of our method for 2-mg gypsum (30 mumol of H 2O) samples is 0.3 per thousand for oxygen and less than 1.4 per thousand for hydrogen isotope measurements. For oxygen isotope analysis alone, samples as small as 0.2 mg of gypsum can be analyzed with a precision of 0.3 per thousand.  相似文献   

16.
本文研究了共掺Er3 +/Yb3 +P2 O3 -B2 O3 -Al2 O3 -SrO -BaO玻璃的能量转移过程。实验中制备了高掺杂Yb3 +离子的双掺Er3 +/Yb3 +的磷酸盐玻璃样品。在Er3 +/Yb3 +掺杂比率 >1 :1 8(mol% )时 ,观测到了基于Yb3 +离子至Er3 +离子能量转移下Er3 +( 4 I13 / 2 →4I15 / 2 )的增强发射和Yb3 +( 2 F7/ 2 →2 F5 / 2 )发射的减弱 ,当Yb3 +离子掺杂浓度超过 2 .1× 1 0 2 1ions/cm3 时 (Er3 +/Yb3 +≤ 1 :1 8,mol% ) ,由于Yb3 +离子的自淬灭效应 ,Er3 +离子的发射强度降低。实验中得到了Yb3 +离子的最佳掺杂浓度为1 .74× 1 0 2 1ions/cm3  相似文献   

17.
A study of ZnGa2O4 phosphor prepared by the solid method   总被引:2,自引:0,他引:2  
In this study, the mixtures of ZnO and Ga2O3 powder with addition of LiCl flux were fired, the raw material mixing ratio, doping with Mn2+ and firing atmosphere effects on phosphor characteristics were investigated. When fired at 1200 °C, its phosphor powder emits a broad-band spectrum range between 375 nm to 700 nm, with a peak at 470 nm. The optimal composition of phosphors is about ZnO/Ga2O5=47/53. Manganese-doped ZnGa2O4, fired in air, exhibits two new emission bands with peaks at 506 nm (Mn2+ emission centre) and 666 nm (Mn4+ emission centre). However, if fired under vacuum, the emission spectrum presents only the 506 nm peak with increased intensity. The 666 nm emission peak derived from a little Mn2 oxidized to Mn4+ which substituted Ga3+ to occupy the B sites of the spinel structure. The emission intensity of the 506 nm peak of Zn1-xMnxGa2O4 is strongest when [Mn2+] x=0.006 and decreases markedly as the concentration of Mn2+ exceeds x=0.01. Most of the substitutional Mn2+ doping species in spinel ZnGa2O4 occupy the zinc sites. The luminescent band was associated to the spin-forbidden transition, 4T1(4G)6A1 (6S). © 1998 Kluwer Academic Publishers  相似文献   

18.
Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible delta15N and delta18O values were obtained at both natural-abundance levels (+/-0.2-0.5 per thousand for delta15N and +/-0.4-1.0 per thousand for delta18O) and moderately enriched 15N tracer levels (+/-20-50 per thousand for delta15N near 5000 per thousand) for 5-20 nmol of NO2- (1-20 micromol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.  相似文献   

19.
Ba3MgSi2O8:Eu2+, Mn2+ phosphors were synthesized by the sol-gel method and high temperature solid-state reaction method, respectively. XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), PL (photoluminescence spectra), and PLE (photoluminescence excitation spectra) were measured to characterize the samples. Emission and excitation spectra of our Ba3MgSi2O8:Eu2+, Mn2+ phosphors monitored at 441, 515, and 614 nm are depicted in the paper. The emission intensities of 441 and 515 nm emission bands increase with increasing Eu2+ concentration, while the peak intensity of the 614 nm band increases with increasing Mn2+ concentration. We conclude that the 515 nm emission band is attributed to the 4f(6)5d transition of Eu2+ ions substituted by Ba2+ sites in Ba2SiO4. The 441 nm emission band originates from Eu2+ ions, while the 614 nm emission band originates from Mn2+ ions of Ba3MgSi2O8:Eu2+, Mn2+. Nano-crystalline Ba3MgSi2O8:Eu2+, Mn2+ phosphors prepared by the sol-gel method show higher color rendering and better color temperature in comparison with the samples prepared by high temperature solid-state reaction method.  相似文献   

20.
铝热还原制备铜铬合金时,合金中会存在气孔以及Al2O3、Cr2O3等夹杂物,采用电渣重熔工艺可有效去除气孔及夹杂物等缺陷。采用内柱体旋转法测量了不同组成的CaO-Al2O3-Cr2O3、CaO-Al2O3-CaF2-Cr2O3渣系的黏度,采用XRD技术分析了高温熔炼渣的物相,并计算了各渣样的黏流活化能。研究结果表明,当碱度不变时,随着CaO-Al2O3中Cr2O3含量的增加,渣样的黏度逐渐降低。当Cr2O3含量为4%时,下降的趋势很大,当Cr2O3含量为2%时黏度下降趋势平缓,当渣系中Cr2O3含量较高时会出现Ca3Al2O6等高熔点相,造成渣黏度增大。CaO-Al2O3-CaF2-Cr2O3渣的高温黏度较低,1500℃时渣样的粘度均小于0.1Pa.s。渣系的黏流活化能变化趋势与渣样的黏度值变化趋势一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号