首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In personnel monitoring services, it is important to omit the high-temperature annealing process so that large numbers of TL detectors can be produced economically. There are two efficient ways of reducing the residual signal of LiF:Mg,Cu,P. One is by increasing the maximum readout temperature and the other is by improving the preparation procedure (increasing the Cu concentration and the sintering temperature) but both reduce the TL sensitivity. In personal dosimetry the real dosimetric signals are separated from the residual signals by computerised analysis of glow curves. The adverse influence of the high residual signals of LiF:Mg.Cu.P TL material has been effectively eliminated and the sensitivity remains stable. A good dosimetric result using only reader measurement without pre-irradiation oven annealing is attained in a dose range of 50-80,000 microGy.  相似文献   

2.
The effects of UV-induced bleaching of deep traps on Harshaw thermoluminescent (TL) LiF:Mg,Cu,P and LiF:Mg,Ti materials were investigated. During a normal heating cycle, LiF:Mg,Cu,P is limited to a maximum temperature of 240 °C. LiF:Mg,Ti can be read to higher temperatures; however, encapsulation in polytetrafluoroethylene limits the maximum readout temperature to 300 °C. Generally, for both materials, these respective temperatures are sufficient for emptying traps corresponding to the main dosemetric peaks. However, when the dosemeters are subjected to a high dose level, such as 1 Gy (much higher than individual monitoring dose levels), higher temperature traps are filled that cannot be emptied without exceeding the above-mentioned maximum temperatures. These high temperature traps tend to be unstable during normal readout and can significantly increase the residual TL signal. The purpose of this study was to investigate the applicability of a UV-induced bleaching technique for emptying higher temperature traps following high-dose applications. In addition, in the case of LiF:Mg,Cu,P, where the maximum readout temperature is significantly lower, we investigated the possibility of reducing the residual signal using the application of repeated readout cycles. The optical bleaching approach was found to be effective in the case of LiF:Mg,Ti; however, for LiF:Mg,Cu,P, no reduction in the residual signal was observed. For this latter material, the application of repeatable readout cycles is very effective and residual signals equivalent to dose levels as low as 0.01 mGy were observed following an initial dose of 5 Gy. To the best of our knowledge, this work is the first attempt to apply an 'optical annealing' technique to the Harshaw thermoluminescent dosemeter (TLD) materials.  相似文献   

3.
It has recently been recommended that heating rates do not exceed 10 K.s(-1) and that the maximum temperature of readout should not exceed 265 degrees C for LiF:Mg,Cu,P. In some cases, a decrease of sensitivity in this material in the first of several re-use cycles had been reported. Influence of heating rates up to 30 K.s(-1), duration time up to 40s and maximum readout temperatures up to 270 degrees C on TL response, re-usability and residual signal was investigated. It was found that the maximum readout temperatures above 240 degrees C may lead to the thermoluminscent response decrease in the first several re-use cycles. The readout parameters can be optimised to minimise the residual signal (less than 0.4%) and to retain a constant sensitivity at the same time at high heating rates up to 30 K.s(-1) in a short time (less than 1 min per TL chip) without the necessity of heating above 240 degrees C. A concept of 'efficient residual signal' was put forward to quantify more accurately the real residual signal which affects the precision of the next measurement.  相似文献   

4.
On the basis of the newly discovered behaviour of LiF:Mg,Cu,P detectors at high and ultra-high doses, a new method of thermoluminescence (TL) measurement of radiation doses ranging from micrograys up to a megagray, has been recently developed at the Institute of Nuclear Physics (IFJ). The method is based on the relationship between the TL signal, integrated in the given temperature range and dose. It is quantified by a parameter called the 'ultra-high temperature ratio'. It has been demonstrated that this new method can measure radiation doses in the range of about 1 μGy to 1 MGy, using a single LiF:Mg,Cu,P detector. This method was recently successfully blindly tested for 10 MeV electrons up to doses of 200 kGy. It can be used for dosimetry in high-energy accelerators, especially in the Large Hadron Collider at CERN, and has great potential for accident dosimetry in particular.  相似文献   

5.
The simulation of response of a new passive area dosemeter for measuring ambient dose equivalent H*(10) for photons has been performed using the Monte Carlo code MCNP and experimentally determined responses of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent (TL) detectors for hard-filtered X-ray spectra from 20 to 300 keV and for 137Cs and 60Co gamma radiation. Relative TL efficiency for both types of detectors, determined in experiments with bare detectors and similar Monte Carlo simulations, compared favourably with prediction of microdosimetric models for proposed microdosimetric target sizes in the range of 20-40 nm. The concluding verification experiment showed small deviations between measured and simulated dosemeter energy response values in the range of a few percent.  相似文献   

6.
Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets have been developed for application in radiation dosimetry. LiF:M,Cu,Na,Si TL pellets were made from TL powders using a sintering process, that is, pressing and heat treatment. These pellets have a diameter of 4.5 mm, and a thickness of 0.8 mm are blue in colour and have a mass of 28 mg each. After 400 pellets had been produced they were irradiated with 137Cs gamma radiation and samples having a sensitivity within a +/-5% standard deviation were selected for experimental use. In the present study, the physical and dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets were investigated for their emission spectrum, dose response, energy response and fading characteristics. Photon irradiation for the experiments was carried out using X ray beams and a 137Cs gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and 10(-6) - 10(2) Gy respectively. The glow curves were measured with a manual type thermoluminescence dosimetry reader (system 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of 5 degrees C.s(-1). the main dosimetric peak of the glow curve appeared at 234 degrees C, its activation energy was 2.34 eV and the frequency factor was 1.00 x 10(23). The TL emission spectrum appeared at the blue region centred at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to the 137Cs response were within +/-20% in the overall photon energy region. No fading of the TL sensitivity of the pellets stored at room temperature was found over the course of a year. Therefore LiF:Mg,Cu,Na,Si TL pellets can be used for personal dosimetry, but more research is needed to improve the characteristics for repeated use.  相似文献   

7.
LiF-based thermoluminescence (TL) materials have been widely used for radiation dosimetry due to their attractive features. LiF:Mg,Cu,P is one of the most sensitive tissue-equivalent TL materials, approximately 40 times more sensitive than LiF:Mg,Ti (TLD-100), but it has two main drawbacks: a thermal loss of the TL sensitivity when annealed at temperatures >240 degrees C, and a relatively high-residual signal. Recently, LiF:Mg,Cu,Na,Si TL material was developed to overcome these drawbacks at the Korea Atomic Energy Research Institute, but it provided only marginal improvements in reducing the residual signal. The newly developed LiF:Mg,Cu,Si TL material has a significantly lower residual signal and a better stability to thermal treatments. In this article, the preparation method and some dosimetric properties (sensitivity and residual signal) of the new LiF:Mg,Cu,Si TL material are presented. At the end of the preparation procedures, a dual-step annealing method is introduced and this has proved as a very efficient method to reduce the high-temperature peak and is the cause of residual signal. Therefore, the high-temperature peak in the glow curve was significantly reduced. The sensitivity is approximately 20 times higher than that of TLD-100 and the residual signal was estimated to be approximately 0.04%.  相似文献   

8.
A procedure for synthesis of the highly sensitive pellet-type LiF:Mg,Cu,Na,Si thermoluminescent (TL) detector has been newly developed. It was found that the optimum concentrations of dopants for a pellet-type LiF:Mg,Cu,Na,Si TL detector were found to be Mg: 0.2 mol %, Cu: 0.05 mol %, Na: 0.9 mol%, and Si: 0.9 mol%. The TL sensitivity of this new detector was about 30 times higher than that of the TLD-100 by light integration measurements. Reusability study of the detector was carried out for 10 cycles. The results show that the coefficients of variation for each detector separately did not exceed 0.016, and that for all 10 detectors collectively was 0.0054.  相似文献   

9.
There are three main methods used in individual monitoring: radiographic films, thermoluminescence (TL) and optically stimulated luminescence (OSL). Distinguishing between static (e.g. by leaving it accidentally or purposely in the radiation field) and dynamic exposures can be almost routinely performed for radiographic and OSL methods but is still unsolved for TL detectors. The main aim of this work is to develop a method for identifying static exposures of standard TL detectors at doses which are typical of radiation protection. For this purpose, a new TLD reader equipped with a CCD camera was developed to measure the two-dimensional signal map and not only the total light emitted (as is performed with standard photomultiplier-based TL readers). Standard MCP-N (LiF:Mg,Cu,P) TL pellets of 4.5 mm diameter and 0.9 mm thickness were installed in the standard Rados TL personal badges with special, non-uniform filters and exposed statically to 33 keV X-ray beams at three angles: 0 degrees , 30 degrees and 60 degrees . The detectors were readout in the CCD camera reader and 2-D images were collected. The analysis of these CCD images allows the identification of the static exposure cases and partly the angle of incidence at a dose level of 20 mSv.  相似文献   

10.
Measurements of the response of thermoluminescent (TL) detectors after gamma ray doses high enough to observe signal saturation provide input to microdosimetric models which relate this gamma-ray response with the energy response after low doses of photons (gamma rays and low-energy X rays) and after high-LET irradiation. To measure their gamma ray response up to saturation, LiF:Mg,Ti (MTS-7 and MTT), LiF:Mg,Cu,P (MCP-7), CaSO4:Dy (KCD) and Al2O3:C detectors were irradiated with 60Co gamma rays over the range 1-5000 Gy. The X-ray photon energy response and TL efficiency (relative to gamma rays) after doses of beta rays and alpha particles, were also measured, for CaSO4:Dy and for Al2O3:C. Microdosimetric and track structure modelling was then applied to the experimental data. In a manner similar to LiF:Mg,Cu,P, the experimentally observed under response of alpha-Al2O3:C to X rays <100 keV, compared with cross-section calculations, is explained as a microdosimetric effect caused by the saturation of response of this detector without prior supralinearity (saturation of traps along the tracks). The enhanced X-ray photon energy response of CaSO4:Dy is related to the supralinearity observed in this material after high gamma ray doses, similarly to that in LiF:Mg,Ti. The discussed model approaches support the general rule relating dose-, energy- and ionisation density-responses in TL detectors: if their gamma ray response is sublinear prior to saturation, the measured photon energy response is lower, and if it is supralinear, it may be higher than that expected from the calculation of the interaction cross sections alone. Since similar rules have been found to apply to other solid-state detector systems, microdosimetry may offer a valuable contribution to solid-state dosimetry even prior to mechanistic explanations of physical phenomena in different TL detectors.  相似文献   

11.
LiF:Mg,Cu,P is starting to replace LiF:Mg,Ti in a variety of personnel dosimetry applications. LiF:Mg,Cu,P has superior characteristics as compared to LiF:Mg,Ti including, higher sensitivity, improved energy response for photons, lack of supralinearity and insignificant fading. The use of LiF:Mg,Cu,P in large scale dosimetry programs is of particular interest due to the extreme sensitivity of this material to the maximum readout temperature, and the variety of different dosimetry aspects and details that must be considered for a successful implementation in routine dosimetry. Here we discuss and explain the various aspects of large scale LiF:Mg,Cu,P based dosimetry programs including the properties of the TL material, new generation of TLD readers, calibration methodologies, a new generation of dose calculation algorithms based on the use of artificial neural networks and the overall uncertainty of the dose measurement. The United States Navy (USN) will be the first US dosimetry processor who will use this new material for routine applications. Until June 2002, the Navy used two types of thermoluminescent materials for personnel dosimetry, CaF2:Mn and LiF:Mg,Ti. A program to upgrade the system and to implement LiF:Mg,Cu,P, started in the mid 1990s and was recently concluded. In 2002, the new system replaced the LiF:Mg,Ti and is scheduled to start replacing the CaF2:Mn system in 2006. A pilot study to determine the dosimetric performance of the new LiF:Mg,Cu,P based dosimetry system was recently completed, and the results show the new system to be as good or better than the current system in all areas tested. As a result, LiF:Mg,Cu,P is scheduled to become the primary personnel dosimeter for the entire US Navy in 2006.  相似文献   

12.
In this paper, some results of the study on the roles of the dopants in the LiF:Mg,Cu,Na,Si thermoluminescent (TL) material that was developed at the Korea Atomic Energy Research Institute for radiation protection are presented. Although there have been many studies to investigate the roles of the dopants in LiF:Mg,Cu,P TL material in the TL process, there are some discrepancies in the understanding of the roles of Cu and P between various researchers. In case of LiF:Mg,Cu,Na,Si TL material, there are a few studies on the roles of the dopants. Three kinds of samples in each of which one dopant is excluded, and the optimised sample, were prepared for this study. The measurements and analysis of the three-dimensional TL spectra, based on the temperature, wavelength and intensity, and the glow curves for those samples are used in this study. The results show that Mg plays a role in the trapping of the charge carriers and Cu plays a role in the luminescence recombination process; however, the effect of Na and Si on the glow curve structure and the TL emission spectra is much less than that of Mg and Cu. It is considered that Na and Si each plays a role in the improvement of the luminescence efficiency.  相似文献   

13.
Measurements of weakly penetrating radiation in personal dosimetry present problems in the design of suitable detectors and in the interpretation of their readings. For the measurement of the individual beta radiation dose, personal dosemeters for the fingers/tips are required. LiF:Mg,Cu,P is a promising thermoluminescent (TL) material which allows the production of thin detectors with sufficient sensitivity. Dosimetric properties of two different types of extremity dosemeters, designed to measure the personal dose equivalent Hp(0.07), have been compared: LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD700H). A type test for energy response for photon and beta radiation according to ISO 4037-3 and ISO-6980 was carried out and the results for both dosemeters were compared. Simultaneous measurements with both types of dosemeters were performed at workplaces, where radiopharmaceuticals containing different radioisotopes are prepared and applied. Practices in these fields are characterized by handling of high activities at very small distances between source and skin. The results from the comparison of the two-dosemeter types are presented and analysed with respect to different radiation fields. Experiments showed a satisfactory sensitivity for the thinner dosemeter (TLD 700H) for detecting beta radiation at protection levels and a good energy response.  相似文献   

14.
Post-exposure annealing of highly sensitive LiF:Mg,Cu,P (MCP-N) detectors, at 100 degrees C over 10 or 20 min prior to readout, is usually recommended for routine dosimetry. The purpose of this anneal is to eliminate low-temperature peaks, especially peak 3, which fades at room temperature in about 3 months. However, as this annealing procedure does not entirely eliminate peak 3, 10% of its thermoluminescent (TL) signal still being readable, a fading correction must be applied. The aim of this work was to optimise the conditions of post-exposure treatment, i.e. its temperature and duration, in order to facilitate the use of MCP-N detectors in routine dosimetry. MCP-N detectors were annealed in standard conditions, i.e. at 240 degrees C over 10 min and exposed to a dose of 5 mGy (137Cs). For post-exposure annealing, six different temperatures between 100 degrees C and 150 degrees C and two time periods (10 and 20 min) were tested. TL glow curves were deconvoluted with the GCA code. A post-exposure anneal at 120 degrees C over 10 min was found to be optimal. Heating at this temperature eliminates 100% of the TL signal of peak 3, while maintaining the area and maximum intensity of the main peak 4 unchanged. In this case, no fading correction needs to be applied. Annealing at higher temperatures, up to 150 degrees C, results in a loss of peak 4 signal, and is therefore not recommended.  相似文献   

15.
LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Department of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ± 5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months.  相似文献   

16.
There are two widely applied types of thermoluminescent detectors based on LiF:Mg luminophor: Lif:Mg,Ti and highly sensitive LiF:Mg,Cu,P. The role of luminescence centres in these materials is usually attributed to defects connected with, respectively, titanium and phosphorus dopants. In order to check how composition of dopants introduced into the LiF lattice influences emission spectra, measurements on a series of variously doped LiF:Mg samples were performed. Apart from LiF:Mg,Cu,P and LiF:Mg,Ti detectors with different concentration of activators, an experimental sample being a kind of a 'hybrid' between both standard materials was also prepared. It was synthesised with concentrations of magnesium and copper identical to those used for LiF:Mg,Cu,P preparation. but instead of phosphorus it was doped with titanium (LiF:Mg,Cu,Ti). The measurements of the emission spectra were performed by using a liquid nitrogen cooled CCD 1024E detector with an SP150 spectrograph. During the measurements the samples were placed inside a cryostat in a vacuum. Resulting data were numerically deconvoluted for individual peaks with respect to the wavelength and the temperature. The glow curve shape of this material resembles that of LiF:Mg,Cu,P, while sensitivity is at the level of LiF:Mg,Ti. Preliminary results indicate that emission of the LiF:Mg,Cu,Ti sample is similar to that of LiF:Mg,Cu,P rather than to LiF:Mg,Ti, showing a maximum for wavelengths well below 400 nm.  相似文献   

17.
The ENEA photon dosemeter, introduced in 1995, consisting of two differently filtrated LiF(Mg,Cu,P) detectors, has been modified recently. The ABS (acrylonitrile butadiene styrene) plastic support has been replaced by a new aluminium card supporting the same two detectors (LiF(Mg,Cu,P) GR200). The new card, fully developed at the ENEA-Radiation Protection Institute (which is going to be patented), can now be processed through a Harshaw Model 6600 Automated TLD Reader, a hot gas reader. This paper reports the results of the individual calibration of approximately 60,000 LiF(Mg,Cu,P) GR200 detectors inserted on the new aluminium cards. Before the implementation in routine of the new cards, the reader has been characterised. Steps and tests to be made to use the card in routine (i.e. reader stability, linearity, reproducibility, etc.) are reported. The whole dosimetric system now combines the very good performances of the Harshaw Model 6600 reader and that of LiF(Mg,Cu,P) thermoluminescent material.  相似文献   

18.
In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.  相似文献   

19.
This paper reports on the results of a heating profile analysis using a commercial routine read-out system with non-contact hot nitrogen heating, using linear heating gas profiles. Glow curves of TLD-100 were analysed for different linear heating gas rates from 1 degree C x s(-1) to 30 degrees C x s(-1). The analysis of the individual peak maxima (Peak 2-5) leads to an approximation of the real heating profile in the TL detector. It was found that the real heating profile deviates strongly from linearity, and that the temperature lag between the heating gas and the detector reaches values up to some tens of degrees C. The consequences of this non-linearity, with respect to the resulting glow curves, are discussed in this paper. These results lead to a better understanding of the shape of routine TL glow curves and help to improve the use of glow curves analysis in routine services. In addition, a simple procedure is described which allows calculation of the real heating profile based on the heating gas temperature profile. This model shows a very good match between experimental data and calculated values.  相似文献   

20.
The ENEA Radiation Protection Institute has been operating the only neutron personal dosimetry service in Italy since the 1970s. Since the 1980s the service has been based on PADC (poly allyl diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and (7)LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of H(p)(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号