共查询到19条相似文献,搜索用时 46 毫秒
1.
龚雪慧 《数字社区&智能家居》2014,(13):3064-3066
图像分割算法是指从待割图像中提取出感兴趣的目标,以便进行图像分析与图像理解。Snake算法不同于传统的图像分割方法。文中详细介绍了Snake模型的数学机理及离散化方法,最后利用贪婪法实现了Snake算法,并应用与实际图像的分割。 相似文献
2.
龚雪慧 《数字社区&智能家居》2014,(5):3064-3066
图像分割算法是指从待割图像中提取出感兴趣的目标,以便进行图像分析与图像理解。Snake算法不同于传统的图像分割方法。文中详细介绍了Snake模型的数学机理及离散化方法,最后利用贪婪法实现了Snake算法,并应用与实际图像的分割。 相似文献
3.
通过对Snake模型和指纹图像约束信息和目标形状等先验知识的分析,提出了一种基于改进的Snake模型的指纹分割算法。实验结果表明,基于改进的Snake模型的分割算法较传统的指纹分割有着更高的准确率,具有一定的应用价值。 相似文献
4.
基于活动轮廓(Snake)模型的目标轮廓提取是图像分割中一种重要的方法.为了克服传统Snake模型在图像分割中不能向凹处收敛和收敛不准确的缺点,提出了一种粒子群优化算法与改进的Snake模型相结合的图像分割算法.改进的Snake模型,即在传统的Snake 模型的基础上增加了一个向心能量,增加此能量可以使初始化曲线向目标的凹处收敛.又由于粒子群优化算法具有获得全局最优的能力,可以使曲线能更准确地收敛到目标的边界.通过实验证明此方法可以取得很好的分割效果. 相似文献
5.
基于改进Snake模型的图像分割方法 总被引:5,自引:2,他引:5
Snake(主动轮廓线)模型即能量最小化运动曲线模型,最初由Kass在1987年提出,具有良好的获取特定区域内目标边缘的能力,是一种极为有效的图像分割方法。针对传统Snake模型对初始轮廓的依赖性问题,利用围绕目标形心的圆环间平均灰度差异来确定初始轮廓点,对噪声的干扰有一定的抑制作用,并减少了人工选取的工作量。通过离散Snake算法与分段DP算法的有效结合来获取图像的特征边缘点,以提高Snake算法的收敛速度。最后利用单调性原则对边缘点进行分区,在各个单调区间内采用曲线拟合的方法来获得连续的图像边缘。实验结果表明,基于改进Snake模型的图像分割方法可以从图像中提取连续、封闭的边缘曲线,能够较好的将目标从图像中提取出来。 相似文献
6.
虽然Snake模型是一种有效的基于参数的轮廓探测方法,但由于其对初始位置过于敏感,不但参数选取缺乏严格的理论指导,且不能处理拓扑结构改变的问题。为此,针对Snake模型在弱边缘处容易溢出等不足,首先通过引入区域信息对Snake模型的图像力进行了修正,然后对Snake模型容易陷入局部极小化的问题,利用粒子群优化算法的全局优化特性和良好的数值稳定性来对Snake模型的分割结果进行优化。人工合成图像和医学图像的实验结果表明,该方法是有效的。 相似文献
7.
虽然Snake模型是一种有效的基于参数的轮廓探测方法,但由于其对初始位置过于敏感,不但参数选取缺乏严格的理论指导,且不能处理拓扑结构改变的问题。为此,针对Snake模型在弱边缘处容易溢出等不足,首先通过引入区域信息对Snake模型的图像力进行了修正,然后对Snake模型容易陷入局部极小化的问题,利用粒子群优化算法的全局优化特性和良好的数值稳定性来对Snake模型的分割结果进行优化。人工合成图像和医学图像的实验结果表明,该方法是有效的。 相似文献
8.
二维超声影像中肿瘤轮廓特征是判断乳腺肿瘤的良恶性的重要依据。针对超声医学图像的特点,本研究对经典的Snake模型进行了改进:内部能量中加入轮廓平均长度项的控制;外部能量由基于图像统计特征的区域能量以及梯度方向势能决定,并提出了基于贪婪算法求解模型最小值的快速算法。实验结果显示本算法在噪声强度较大的模拟图像和超声医学图像中均取得了同人工分割近似的结果,而经典的Snake模型和GVF模型受噪声干扰较大。大量的实验证明本算法有效地克服了散斑噪声对分割结果的影响,可准确高效地提取超声图像中的乳腺肿瘤轮廓。 相似文献
9.
二维超声影像中肿瘤轮廓特征是判断乳腺肿瘤的良恶性的重要依据。针对超声医学图像的特点,本研究对经典的Snake模型进行了改进:内部能量中加入轮廓平均长度项的控制;外部能量由基于图像统计特征的区域能量以及梯度方向势能决定,并提出了基于贪婪算法求解模型最小值的快速算法。实验结果显示本算法在噪声强度较大的模拟图像和超声医学图像中均取得了同人工分割近似的结果,而经典的Snake模型和GVF模型受噪声干扰较大。大量的实验证明本算法有效地克服了散斑噪声对分割结果的影响,可准确高效地提取超声图像中的乳腺肿瘤轮廓。 相似文献
10.
利用PET图像进行诊治时需要对人体病灶精确定位,PET图像中病灶目标区域的分割是早期诊断与治疗的前提和关键。基于传统Snake模型的方法在PET图像分割时存在对初始轮廓过于敏感,难以收敛到目标凹型区域等问题,为此将GVF Snake模型引入PET图像的分割中。为防止GVF Snake模型陷入局部最优,进一步利用差分进化(DE)算法的全局优化特性对GVF Snake模型分割的结果进行优化,提高PET图像分割精度。实验结果表明,该方法能有效地对PET图像中的病灶目标区域进行分割,可避免陷入局部最优且具有良好的实时性。 相似文献
11.
12.
13.
基于Snake模型的视频对象分割和跟踪算法 总被引:1,自引:1,他引:1
视频对象的分割是基于内容的视频处理中重要的组成部分。提出并实现了一种半自动视频对象分割和跟踪算法。算法主要基于Williams活动轮廓模型,通过求取轮廓点的局部能量最小值对轮廓线进行更新。轮廓扩张技术用来追踪变形的轮廓边缘。通过对轮廓中心点运动的统计,预测对象的运动方向和大小。实验仿真结果表明,这种改进的Snake算法能够收缩到图像的凹陷部分,而且能较好地跟踪视频对象的运动。 相似文献
14.
针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式--加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵。在谱映射过程中,采用Nystrom逼近策略近似估计相似性矩阵及其特征向量,大大减少了求解相似性矩阵的运算复杂度,降低了内存消耗。对得到的低维向量子空间采用一种新型的聚类算法--近邻传播聚类算法进行聚类,避免了传统谱聚类采用K-means算法对初始值敏感,易陷入局部最优的缺陷。实验表明该算法获得了比传统谱聚类算法更好的分割效果。 相似文献
15.
针对传统的FCM算法随机获取初始聚类中心与分类类别数的缺陷问题,提出了一种获取初始聚类中心与分类类别数的方法,并采用交叉熵测度准则进行FCM聚类,对彩色图像进行分割,提取有意义区域.实验结果表明,该方法不仅能够提高算法的聚类速度与算法的普适度,而且可以改善图像的聚类效果.与传统的FCM算法相比,该算法更易于实现彩色图像有意义区与背景的分离,分割效果令人满意. 相似文献
16.
为了准确测量传送带上的矿石尺寸,提出了一种局部自适应阈值化和改进的分水岭变换相结合的矿石图像分割算法.该算法利用基于积分图像的自适应阈值化算法提取矿石区域;对二值图像做距离变换与双边滤波处理,并应用提出的基于区域合并的分水岭变换算法对图像进行分割;将提取的矿石区域与分割结果进行合并,得到最终的分割结果.对现场采集的复杂的矿石图像进行仿真实验,实验结果表明,该算法分割准确、速度快、光照自适应强. 相似文献
17.
基于改进区域生长算法的彩色图像分割 总被引:1,自引:0,他引:1
本文提出一种改进的区域生长算法.该算法利用颜色分类结果和连续图像的相似性,改进了种子搜索方法,与全局搜索种子的方法相比减少了种子搜索的时间,并且实现简单有效.实验结果表明改进的区域增长算法应用于RoboCup中型组足球机器人的全景彩色图像分割具有良好的时效性. 相似文献
18.