首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a recent paper, the effect of cyclic shearing on forced shear localization in an infinite granular strip between rough boundaries was numerically investigated. The present paper focuses on the evolution of spontaneous developed shear localization within an granular body under plane strain conditions, constant lateral pressure and cyclic vertical compression-extension. For a simulation of the mechanical behavior of a cohesionless granular material, a micro-polar hypoplastic constitutive is used which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. For the calibration of the constitutive constants, the data of a medium quartz sand are used. The attention of numerical simulations is laid on the influence of the number of cycles, the magnitude of the vertical deformation amplitude and the initial density on the evolution of shear zones in an initially prismatic granular specimen.  相似文献   

2.
The mechanical behavior of granular materials is largely affected by particle breakage. Physical and mechanical properties of granular materials, such as grain size distribution, deviatoric and volumetric behavior, compressibility and mobilized friction angle are affected by particle crushing. This paper focuses on the evolution of the above mentioned characteristics using the Discrete Element Method (DEM). Behaviors of stiff and soft materials are studied using well established crushing criteria. Results from simulations indicate that stiff materials, have a typical fractal distribution of particle size, which is dominant when confining pressure increases. The fractal characteristic parameter of grain size effect is discussed. Evolution of shear stresses and volumetric strains during shearing are also predicted and analyzed. Expanded perlite, selected as a soft material, is investigated in terms of shear and volumetric behavior. For perlite, triaxial compression tests and corresponding DEM simulations are also performed. Results show good agreement between experiments and simulations and support the fact that the DEM can be considered as a useful tool to predict the behavior of crushable granular materials.  相似文献   

3.
J. Tejchman  W. Wu 《Granular Matter》2009,11(2):115-128
Shear localization in granular materials under high shear rate is analysed with the finite element method and a micro-polar hypoplastic constitutive model enhanced by viscous terms. We consider plane strain shearing of an infinitely long and narrow granular strip of initially dense sand between two very rough walls under conditions of free dilatancy. The constitutive model can reproduce the essential features of granular materials during shear localization. The calculations are performed under quasi-static and dynamic conditions with different shear rates. In dynamic regime, the viscosity terms are formulated based on a modified Newtonian fluid and according to the formula by Stadler and Buggisch (Proceedings of the conference on Reliable flow of particulate solids, EFCE Pub. Series, vol 49. Chr. Michelsen Institute, Bergen, 1985). Emphasis is given to the influence of inertial and viscous forces on the shear zone thickness and mobilized wall friction angle.  相似文献   

4.
The effect of vibration on the solid-to-liquid-like transition of a dense granular assembly under planar shear is studied numerically using soft particle molecular dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of vertical vibration, and determine statistics of the shear required for fluidization. In the absence of vibration, the threshold value of the shear stress depends on the preparation of the system and has a broad distribution. However, adding periodic vibration both lowers the mean fluidization threshold value of the shear stress and decreased its variability. A previous study performed similar simulations using random noise; the results from these two studies exhibit excellent agreement with proper normalization over appropriate ranges of parameters.  相似文献   

5.
The behavior of granular materials mainly depends on the mechanical and engineering properties of particles in its structural matrix. Crushing or breakage of granular materials under compression or shear occurs when the energy available is sufficient to overcome the resistance of the material. Relatively little systematic research has been conducted regarding how to evaluate or quantify particle crushing and how it effects the engineering properties of the granular materials. The aim of this study is to investigate the effect of crushing on the bulk behavior of granular materials by using manufactured granular materials (MGM) rather than using a naturally occurring cohesionless granular material. MGM allow changing only one particle parameter, namely the “crushing strength”. Four different categories of MGM (with different crushing strength) are used to study the effect on the bulk shear strength, stiffness modulus, friction and dilatancy angle “engineering properties”. A substantial influence on the stress–strain behavior and engineering properties of granular materials is observed. Higher confining stress causes some non-uniformity (strong variations/jumps) in volumetric strain and a constant volumetric strain is not always observed under large shear deformations due to crushing, i.e. there is no critical state with flow regime (with constant volumetric strain).  相似文献   

6.
The intention of this paper is to present a comparison of the results of discrete element and finite element simulations of a simple shear test for medium dense cohesionless sand. Such a comparison may provide useful information on the limitations and possible advantages of micro-polar continuum models for granular media as compared with discrete element models. To simulate the discrete nature of sand at the micro-level during shearing, the 3D discrete open-source model YADE developed at Grenoble University was used. Contact moments at spheres were assumed to capture the influence of force eccentricities due to grain roughness. Attention was paid to some micro-structural events (such as vortices, force chains, vortex structures, local void ratio fluctuations) appearing in a shear zone and kinetic, elastic and dissipated energies in granular specimen. The results of the discrete element simulations were compared with the corresponding finite element (FE) solutions based on a micro-polar hypoplastic constitutive model for granular material. A satisfactory agreement between discrete and FE results was achieved. Advantages and disadvantages of both approaches are outlined.  相似文献   

7.
Cyclic shearing of an infinite narrow layer of dry and cohesionless sand between two very rough boundaries under constant vertical pressure is numerically modelled with the finite element method using a polar hypoplastic constitutive relation. The constitutive relation was obtained through an extension of a non-polar model by polar quantities, viz. particle rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. The material constants can be easily determined from granulometric properties and laboratory tests. The attention of numerical simulations is laid on the influence of number of cycles on the thickness of an induced shear zone for both an initially dense and loose granular specimen. In addition, the effect of a stochastic distribution of the initial void ratio on shear localisation is demonstrated.KeywordsGranular material, Cyclic shearing, Polar hypoplasticity, Finite element method, Shear localisation  相似文献   

8.
《Advanced Powder Technology》2020,31(4):1431-1440
This paper aims to study the shear behavior of granular matter by DEM simulations. Granular samples are prepared by automatic clump generation algorithm to create particles of irregular shapes. Simulations of the biaxial test with membrane boundary condition are used to test the shear behavior of samples. A new method for computing sample volume in membrane boundary condition is proposed. Deviatoric stress and volumetric strain curves are plotted to describe contracting-dilatancy of granular materials during the shearing stage. Formation of the shear band is studied from particle rotation and particle displacement fields. The influence of confining pressure, initial porosity, and friction coefficient on the development of shear band are studied. Lower confining pressure, higher initial porosity can be resulted in later formation of shear bands.  相似文献   

9.
J. Tejchman  W. Wu 《Granular Matter》2010,12(4):399-410
The interface between granular bodies and structures is analysed with the finite element method and a micro-polar hypoplastic constitutive model. Quasi-static shearing of an infinitely long and narrow granular strip between two rigid walls of different roughness under conditions of free dilatancy and constant vertical pressure is investigated. The constitutive model can reproduce the essential features of granular bodies during shear localization. To model the different roughness of the interface, micro-polar boundary conditions are proposed taking into account the asperity of the wall roughness and grain diameter. Some emphasis is given to the influence of the wall roughness on the thickness of shear zone and the mobilization of wall friction.  相似文献   

10.
11.
The paper focuses on the formation of contractant shear zones in initially loose cohesionless granular materials subject usually to continuous densification. For a simulation of the mechanical behaviour of a granular material during monotonous deformation paths, a micro-polar hypoplastic constitutive model was used which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The FE investigations of shear localization were carried out with initially very loose quartz sand during four different rate boundary value problems: shearing of an infinite layer between two very rough walls, plane strain compression under constant lateral pressure, biaxial compression with rigid and deformable boundaries and passive earth pressure on a horizontally translating retaining wall. The calculations were carried out with a simple random distribution of the initial void ratio under conditions of large deformations and curvatures.  相似文献   

12.
This paper studies the shear behavior of granular materials by using a three-dimensional (3D) discrete element method (DEM) simulation of the triaxial test. The experimental triaxial tests were conducted on glass beads samples for verification. DEM simulations of the triaxial test were carried out in the membrane boundary condition consisting of 37,989 membrane particles. A new method that divides the irregular sample shape into two parts of cones and parts of three-dimensional simplexes is used to follow the volume change of irregular deformation of samples. The free rotatable upper platen is considered during the shearing process, which influences the shear behavior of samples especially in the residual stage and formations of a single shear band or X-shape shear band. The confining pressures have been demonstrated to influence the rotation angle and angular velocity of the upper platen. Moreover, the timing of replacing a rigid wall boundary condition with the membrane boundary condition is investigated, which affects the porosity of samples before shearing and the mechanical strength. The DEM model in the membrane boundary condition reflects well the evolution of irregular sample deformation and shear band in the shearing process. From the perspective of micro structures, the normal force decreases and the tangential stress increases during the shearing stage. This study greatly improves the accuracy of DEM simulations of the triaxial test in the membrane boundary condition.  相似文献   

13.
Shear banding represents a local failure mechanism of a soil structure as a response to shear loading. In soil structures of different spatial scales systems of regularly spaced shear bands can be observed as a consequence of extensional loading. The phenomenon of single shear bands, defined as thin zones of localized deformation with a discontinuity of the strain field at its boundaries, is well understood. Inside the shear band the material undergoes inelastic strain softening accompanied by shearing and dilation, whereas the material outside the shear band unloads accompanied by elastic contraction in extension tests. Despite numerous experimental and numerical investigations, the physical mechanisms and parameters determining the spacing of parallel shear bands remained unknown. The paper in hand presents an analytical solution for the spacing of the shear bands and a comparison with a large base of experimental data gained from 1g and ng (geotechnical centrifuge) model experiments. The analytical solution is based on the assumption that the elastic energy rate in the unloaded zone between the shear bands tends to a minimum value. The spacing was calculated as the energetically preferred solution for a broad range of cohesive-frictional granular materials. The dependency of the calculated spacing on initial and boundary conditions as well as on material parameters was found to be in good agreement with the experimental results.  相似文献   

14.
J. Tejchman 《Acta Mechanica》2002,155(1-2):71-94
Summary The paper deals with numerical investigations on the patterning of shear zones in granular bodies. The behavior of dry sand during plane strain compression tests was numerically modelled with a finite element method using a hypoplastic constitutive relation within a polar (Cosserat) continuum. The constitutive relation was obtained through an extension of a non-polar one by polar quantities, viz. rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. This relation can reproduce the essential features of granular bodies during shear localisation. During FE-calculations, the attention was laid on the influence of boundary conditions and the distribution of imperfections in the granular specimen on the formation of patterns of shear zones.  相似文献   

15.
Xia Li  Hai-Sui Yu 《Acta Mechanica》2014,225(8):2345-2362
In micromechanics, the stress–force–fabric (SFF) relationship is referred to as an analytical expression linking the stress state of a granular material with microparameters on contact forces and material fabric. This paper employs the SFF relationship and discrete element modelling to investigate the micromechanics of fabric, force and strength anisotropies in two-dimensional granular materials. The development of the SFF relationship is briefly summarized while more attention is placed on the strength anisotropy and deformation non-coaxiality. Due to the presence of initial anisotropy, a granular material demonstrates a different behaviour when the loading direction relative to the direction of the material fabric varies. Specimens may go through various paths to reach the same critical state at which the fabric and force anisotropies are coaxial with the loading direction. The critical state of anisotropic granular material has been found to be independent of the initial fabric. The fabric anisotropy and the force anisotropy approach their critical magnitudes at the critical state. The particle-scale data obtained from discrete element simulations of anisotropic materials show that in monotonic loading, the principal force direction quickly becomes coaxial with the loading direction (i.e. the strain increment direction as applied). However, material fabric directions differ from the loading direction and they only tend to be coaxial at a very large shear strain. The degree of force anisotropy is in general larger than that of fabric anisotropy. In comparison with the limited variation in the degree of force anisotropy with varying loading directions, the fabric anisotropy adapts in a much slower pace and demonstrates wider disparity in the evolution in the magnitude of fabric anisotropy. The difference in the fabric anisotropy evolution has a more significant contribution to strength anisotropy than that of force anisotropy. There are two key parameters that control the degree of deformation non-coaxiality in granular materials subjected to monotonic shearing: the ratio between the degrees of fabric anisotropy and that of force anisotropy and the angle between the principal fabric direction and the applied loading direction.  相似文献   

16.
Forced vertical vibration of a granular layer can drive flow phenomena such as heaping, convection, fluidization, densification, surface waves and arching. Food, mineral processing, and pharmaceuticals industries all utilize vibratory processes for the handling and transport of granular materials. Understanding how a granular material responds when subjected to vibration is essential for equipment design. Three-dimensional discrete element simulations have been used in this study to investigate the convective motion leading to arching in a vertically vibrated, deep granular bed. The undulating granular layer contains alternating regions that first compact and then relax. The dynamics of these regions may depend on material properties such as restitution and friction coefficients; as well as particle shape. The effects of these factors on the kinematics and dynamics of the arching pattern are investigated here. The arching pattern is found to arise from synchronised momentum transfer between the rise and fall of the deforming granular layer and horizontally travelling waves. The arching pattern was found to be stable across a broad range of restitution and friction levels and particle shapes. Particles with high restitution tend to disrupt the timing between the vertical and horizontal periodic flows and affect the stability of the pattern selection. Large friction results in shear resistance, higher bed pressures, lower bulk densities, and delays in the timing of the vertical and horizontal momentum transfer. Non-sphericity leads to increased dilation of the bed, slower sideways velocities, and increased loading on the floor and dissipation rate in the bed.  相似文献   

17.
Physical experiments can characterize the elastic response of granular materials in terms of macroscopic state variables, namely volume (packing) fraction and stress, while the microstructure is not accessible and thus neglected. Here, by means of numerical simulations, we analyze dense, frictionless granular assemblies with the final goal to relate the elastic moduli to the fabric state, i.e., to microstructural averaged contact network features as contact number density and anisotropy. The particle samples are first isotropically compressed and then quasi-statically sheared under constant volume (undrained conditions). From various static, relaxed configurations at different shear strains, infinitesimal strain steps are applied to “measure” the effective elastic response; we quantify the strain needed so that no contact and structure rearrangements, i.e. plasticity, happen. Because of the anisotropy induced by shear, volumetric and deviatoric stresses and strains are cross-coupled via a single anisotropy modulus, which is proportional to the product of deviatoric fabric and bulk modulus (i.e., the isotropic fabric). Interestingly, the shear modulus of the material depends also on the actual deviatoric stress state, along with the contact configuration anisotropy. Finally, a constitutive model based on incremental evolution equations for stress and fabric is introduced. By using the previously measured dependence of the stiffness tensor (elastic moduli) on the microstructure, the theory is able to predict with good agreement the evolution of pressure, shear stress and deviatoric fabric (anisotropy) for an independent undrained cyclic shear test, including the response to reversal of strain.  相似文献   

18.
《Advanced Powder Technology》2021,32(11):4017-4029
This paper aims to study the influence of particle shape on the shear strength of superellipsoidal particles by Discrete Element Method (DEM) simulations of triaxial tests in 3D. A total of forty-nine types of equiaxed superellipsoidal particles from three evolution paths have been created. The definition of effective porosity has been proposed. Our findings show that both the particle sphericity and roundness affect the shear strength of the superellipsoidal particle system. Under the mutual impact of initial porosity and particle shape, the simulation results of shear strength and volumetric strains present a trend of initially decreasing and subsequently increasing. The microstructure evolution of superellipsoidal particles during the shearing process is observed microscopically. The anisotropy of fabric reveals the mechanism of effective porosity and sphericity influencing the macroscopic shear strength at the particle scale.  相似文献   

19.
A plane strain analysis of a deformation and stress field in cohesionless granular bodies during shearing in a direct shear tester was performed with a finite element method on the basis of a hypoplastic constitutive law enhanced by polar quantities: rotations, curvatures, couple stresses, and a mean grain diameter used as characteristic length. The constitutive law takes into account the effect of pressure, void ratio, direction of deformation rate, mean grain diameter, and grain roughness on the material behavior. The FE calculations were carried out with a different initial void ratio, vertical load, mean grain diameter, and specimen length. Attention was focused on the size effect caused by the size of microstructure related to the specimen dimensions and the effect of side boundaries on the shear zone formation. The FE results show that the thickness of the shear zone increases with increasing initial void ratio, pressure level, mean grain diameter, and specimen length. Due to the effect of boundary conditions, the thickness changes along a horizontal midsection (it is widest in the mid-region).  相似文献   

20.
Mechanisms for acoustic emissions generation during granular shearing   总被引:1,自引:0,他引:1  
Shear deformation of granular media leads to continual restructuring of particle contact network and mechanical interactions. These changes to the mechanical state include jamming of grains, collisions, and frictional slip of particles—all of which present abrupt perturbations of internal forces and release of strain energy. Such energy release events typically result in the generation of elastic waves in the kHz frequency range, termed acoustic emissions (AE). The close association between grain-scale mechanics and AE generation motivated the use of AE as surrogate observations to assess the mechanical state of complex materials and granular flows. The study characterizes AE generation mechanisms stemming from grain-scale mechanical interactions. Basic mechanisms are considered, including frictional slip between particles, and mechanical excitation of particle configurations during force network restructuring events. The intrinsic frequencies and energy content of generated AEs bear the signature of source mechanisms and of structural features of the grain network. Acoustic measurements in simple shear experiments of glass beads reveal distinct characteristics of AE associated with different source mechanisms. These findings offer new capabilities for non-invasive interrogation of micromechancial interactions and linkage to a stochastic model of shear zone mechanics. Certain statistical features of restructuring events and associated energy release during shearing were predicted with a conceptual fiber-bundle model (FBM). In the FBM the collective behavior of a large number of basic mechanical elements (representing e.g. grain contacts), termed fibers, reproduces the reaction of disordered materials to progressive loading. The failure of fibers at an individual threshold force corresponds to slipping of a particle contact or a single rearrangement event of the granular network. The energy release from model fiber breakage is the equivalent to elastic energy from abrupt grain rearrangement events and provides an estimate of the energy available for elastic wave generation. The coupled FBM–AE model was in reasonable agreement with direct shear experiments that were performed on large granular assemblies. The results underline the potential of using AE as a diagnostic tool to study micro-mechanical interactions, shear failure and mobilization in granular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号