首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of liquids can significantly affect the dynamics of granular flow. This paper investigates the effect of liquids on radial segregation of granular mixture in a rotating drum using the discrete element method. The wet granular mixture, due to differences in particle size and density, segregates in a similar way to that of dry particles: lighter/larger particles move to the periphery of the bed while heavier/smaller particles stay in the centre. An index based on the variance of local concentration of one type of particles was proposed to measure the degree of segregation. While the liquid induced capillary force slows down the segregation process, its effect on the final state is more complicated: small cohesion shows no or even positive effect on segregation while high cohesion significantly reduces particle segregation. The effect can be explained by the change of flow regimes and the competing effects of mixing and segregation (un-mixing) in particle flow which are both reduced by the interparticle cohesion. A diagram is generated to describe the combined effect of particle size and density on segregation of wet particles. A theory is adopted to predict the segregation of particles under different density/size ratios.  相似文献   

2.
《Advanced Powder Technology》2020,31(5):1784-1788
The manufacture of materials using slurry-based processes, such as the electrodes of Lithium ion secondary batteries and fuel cells, can be made more productive by increasing the concentration of the slurry or adopting wet granules with extremely high concentrations.Shear thickening, which is a particular issue for such highly concentrated slurries, is derived from collisions between particles, it is important to control the size, size distribution, and concentration of particles, as well as the solvent viscosity. Furthermore, the controlling of electrostatic interaction between particles and mixing of different size particles have direct impacts on shear thickening, the concentration of salt in the slurry and size and mixing ratio of particles are also important characteristics. It may be possible to control rheological behavior using these characteristics.The amount of solvent is reduced beyond the level in a concentrated slurry, the slurry changes from a so-called liquid state to a solid state of wet granules. Fully utilizing the properties of these wet granules would maximize various advantages in the production process. Flowability is the most important characteristic for use of highly concentrated wet granules. This research found that flowability is extremely low when the strain is low, but that higher wet granule concentrations flow more easily under high strain.Our latest research about rheological behavior of concentrated slurry and wet granules open up to the possibilities for ultimate form of the electrode manufacturing process might involve film-creation or forming using particles without any liquid content at all. Resolving issues such as the uniformity of the blended powder and flowability control may enable conventional slurry processes to be replaced by powder processes.  相似文献   

3.
Fluidized beds with non-spherical dry and wet particles are widely used in industrial processes, and the mesoscale structure in the bed has an important influence. In this study, CFD-DEM simulations are performed to evaluate the flow behaviors and mesoscale structure in fluidized beds with non-spherical dry and wet particles. The accuracy of the model is validated by comparison with the results of the particle image velocimetry experiment. The force distributions at bubble boundaries are analyzed to explain the influence mechanism of different shapes of bubbles in non-spherical dry and wet particle systems. The factor analysis indicates the interaction of particle shape and viscous liquid on the translational and rotational kinetic energy of particles. When the bed height is low, as the particle aspect ratio increases, the bubble equivalent diameter gradually increases. In addition, as the liquid viscosity increases, the particle and bubble granular temperature gradually decrease, indicating the reduction of particle velocity fluctuate and the decrease of turbulent kinetic energy of bubble. These findings have guiding significance for the fluidization of non-spherical dry and wet particles and can be used to optimize related industrial processes.  相似文献   

4.
Granular materials may readily segregate due to differences in particle properties such as size, shape, and density. Segregation is common in industrial processes involving granular materials and can occur even after a material has been uniformly blended. The specific objective of this work is to investigate via simulation the effect of particle cohesion due to liquid bridging on particle segregation. Specifically, a bi-disperse granular material flowing from a 3-D hopper is simulated using the discrete element method (DEM) for cohesive particles and the extent of discharge segregation is characterized over time. The cohesion between the particles is described by a pendular liquid bridge force model and the strength of the cohesive bond is characterized by the Bond number determined with respect to the smaller particle species. As the Bond number of the system increases, the extent of discharge segregation in the system decreases. A critical value of Bo = 1 is identified as the condition where the primary mechanism of segregation in the cohesionless hopper system, i.e. gravity-induced percolation, is essentially eliminated due to the liquid bridges between particles.  相似文献   

5.
The mixing and segregation of granular materials are essential to provide valuable insights and references for practical industrial production. In this paper, the segregation behaviors of particles with Gaussian distributions and 40% filling level in the rotating drum with rolling regime were numerically studied by the discrete element method. The effects of rotation speed and particle size parameter λ (size ratio of the largest versus smallest particles) on the segregation behavior (mixing index, segregation rate), flow characteristics (particle velocity and trajectory, gyration degree and radius, particle size distributions) and the microscopic properties (collision, contact force, axial diffusion, and kinetic energy) of granular systems were systematically investigated. The results show that the segregation rate and degree of particles with Gaussian distributions gradually increase with the increase of the rotation speed and particle size parameter λ. The radial and axial segregation patterns become more obvious with the increase of λ. And the variation of the flow characteristics of particles with different sizes in the same system is also inconsistent. The microscopic properties of Gaussian-dispersed particles change with the rotation speed and λ. The rapid radial segregation depends on the larger pores existed in the granular system, which leads to a gradual increase of the axial dispersion coefficient of large particles and a gradual decrease of the axial dispersion coefficient of small particles.  相似文献   

6.
Wet granular materials exhibit unique physical and mechanical properties, especially in relation to wave propagation, which is quite different from dry granular materials. In this paper, by introducing the capillary bridge force into the discrete element method, the stress wave in mono-sized bead string with various water content has been studied. First the vibration of two particles with liquid bridge has been analyzed. The presence of the liquid bridge force causes the kinetic response of the particles to exhibit completely different properties than that of the dry particles. The equilibrium position is affected by both the physical properties of the particles and the liquid bridge properties. Then the wave propagation behaviors in a mono-sized bead string have been analyzed. According to whether the liquid bridge volume has an effect on granular motion, the whole process can be divided into two stages. Stage I, particles are physically contacted with each other directly. The influence of liquid bridge force is independent of the bridge volume. Stage II, particles start to oscillate back and forth at their equilibrium positions, the influence of the liquid bridge force becomes related to the bridge volume. The kinetic energy dissipation first decreases and then increases. A U-shaped trend appears throughout the dissipation process. In our work, the mechanical properties of wet granular materials are studied from two levels: particle vibration and wave propagation, which will provide theoretical guidance for the application of granular materials in aqueous environment.  相似文献   

7.
《Advanced Powder Technology》2019,30(11):2703-2711
This study explored the influence of wet and dry grinding conditions on breakage rate, shape factor and surface roughness of ground particles, induction time (the threshold for particle–bubble attachment to occur), and flotation recovery. The experimental results indicated that the dry grinding breakage rate was much higher than the wet grinding one. The first-order region was limited to a relatively short grinding time, where it was considered that little or no secondary breakage occurred. With the increasing time, the dry grinding breakage rate increased, while it decreased for wet grinding (solid concentration of 70 vol.%). The differences in shape factor and surface roughness of the wet- and dry-ground samples were attributed to different breakage mechanisms and grinding energy amounts generated by those two types of procedures. The wet-ground particles were characterized by more irregular shape factors and smoother surfaces, and thus presented shorter induction times and higher floatation recoveries compared to the dry-ground ones.  相似文献   

8.
ABSTRACT

The initial morphology of particles formed by spray drying or spray pyrolsis of solutions, sols or slurries, is determined by the relative velocity between the atomized droplet and the ambient gas in the furnace. A1 high relative velocities, the droplet can be disintegrated or flattened, whereas at low relative velocities the droplet remains spherical throughout the drying process. The time for respheroidization depends on the liquid properties and the solid content of the drying droplet. When the droplet reaches the percolation limit, the higher viscosity inhibits respheroidization, and the morphology of the deformed droplet is fixed. A new model based on the Weber number, percolation criteria, and the drying kinetics, is presented to predict particle morphology for various drying conditions. In addition, the effects of segregation during drying will be discussed in regard to its effect on particle formation during spray formulation. We will show how physical and chemical segregation processes occur in drying droplets, and how these segregation processes can be controlled to yield particles of designed morphology and internal phase distribution.  相似文献   

9.
在混匀矿配料过程中,原料水分变化直接影响配比精度。人工取样分析的水分往往与实际上料水分有较大差异。专门开发的混匀矿水分检测管理系统可实时检测并记录各批次上料的水分及其相关数据,方便流程及班组管理;配料控制系统亦可根据批次的平均水分完成干基计算,提高配比精度。  相似文献   

10.
《Advanced Powder Technology》2019,30(11):2823-2831
Fibrous plant-based materials are characterized by inhomogeneous structure and composition, which further evolve during wet grinding processes and affect the surface functionality of micronized particles. Therefore, the performance of aqueous microgrinding operations in stirred media mills can be optimized by investigating the interaction between process conditions and material properties of heterogeneous fibrous plant materials.In this experimental study it is shown how particle size reduction, tendency of re-agglomeration and stability of the suspension of micronized particles are driven by the specific energy input, residence time, temperature and presence of surfactants during the milling process. A structured experimental approach is described to optimize the achievable particle size reduction, expressed by the top cut diameter d90,3. It was found that the applied wet milling process determines the stability of particle suspensions throughout further downstream processing, making the grinding process the core unit operation with respect to the performance and formulation of food products containing micronized particles.  相似文献   

11.
《Advanced Powder Technology》2020,31(9):4082-4088
Separation of fine particulate solid materials is one of most important unit operations in industry. Utilization of gas-solid fluidized beds has been considered where particulates are released from constraints due to contacts with surrounding particulates and segregation occurs according to density, size or combination of density and size. Addition of mechanical vibration to the gas-solid fluidized bed may improve dry solid separation. In this study, we investigated the dry separation characteristics of solid particulates using a vibro-fluidized bed especially focusing on the separation of fine particulate ores (≈100 μm) with small density differences. At first, we focused on the influence of fluidizing air velocity on the efficiency of segregation. Subsequently, the influence of vibration strength, vibration amplitude and frequency on segregation behavior was investigated. We found the density segregation does not occur with either gas-fluidization or vertical vibration alone. Only the combination of these effects produces density segregation. The fluidizing air velocity is an important factor to enhance the density-segregation of the particulates with small density difference.  相似文献   

12.
Copper matrix composites were fabricated through mixing fixed amount of reduced graphene oxide and the different amounts of titanium. The dried copper/titanium/reduced graphene oxide mixture powders were firstly obtained by the wet‐mixing process, and then the spark plasma sintering process realized their faster densification. In the as‐sintered bulk composites, the layered reduced graphene oxide network, uniform titanium particles and copper‐titanium solid solution are observed in copper matrix. Investigations on mechanical properties show that the as‐prepared bulk composites exhibit the hardness and compressive yield strength compared with single reduced graphene oxide added composites. Increased titanium addition resulted into higher hardness and strength. The relevant formation and failure mechanisms of the composites and their influence on mechanical properties were discussed.  相似文献   

13.
We studied four granulation methods on the same quantitative and qualitative formula: wet massing by forced agglomeration (L?dige) and free agglomeration (Glatt); and dry massing by slugging and roller compaction technique. Three different particle sizes of nitrofurantoin (bioinequivalent drug) were used. The nitrofurantoin particle size has a very low influence on the physical characteristics of the granules. The granulating process influenced the binding of the particles. Granules processed using the wet granulating method were harder than those made by dry process. L?dige granules were more bonded than Glatt granules. Granules prepared by dry massing presented broken particles. The surface area and the porosity of Glatt granules were the most important parameters. Dissolution studies must be effected to make a correlation between the physical results and the dissolution rates. It is necessary to effect a new validation and a comparison of the results when a new granulating apparatus is used.  相似文献   

14.
The present study investigates the hydrodynamics and heat transfer phenomena that occur during the biomass fast pyrolysis process. A numerical approach that combines a two-dimensional Eulerian multi-fluid model and the kinetic theory of granular flow has been applied to simulate the gas-solid flow in a bubbling fluidized-bed reactor. In this study, rice husk and quartz sand with specified properties were used as biomass and inert material, respectively. Our model was first validated the feasibility using previous findings, then an extensive parametric study was conducted to determine the effects of the major variables, especially the size of rice husk particles, on the flow distribution and the heat transfer between the phases. The concept of standard deviation attributed to the dispersion of solid volume fraction was used to calculate the intensity of segregation. The simulated results indicated that the mixing of binary mixture was strongly affected by different sizes of rice husk particles. The heat transfer occurring inside the fluidized bed was described by the distribution of solids temperature, the variation of surface heat flux and heat transfer coefficient. Both heat transfer quantities were observed to be dominant in the dense bed regions as they strongly depend on the solids concentration in the fluidized bed. The increasing inlet gas velocity promoted the mixing of solid particles, thus resulted in the effective heat transfer from wall to particles and between the particles.  相似文献   

15.
Raw powder for use in the tantalum solid electrolytic capacitor was prepared by different processes, that is, the wet method (currently used conversion method) and the dry method (the proposed method). The properties of prepared powder from the dry method were compared with those of the wet method. The present report has focused on the relationship between the conditions of binder preparation and the properties of the prepared powder, such as the particle size distribution, angle of repose, and the tap density, respectively. Furthermore, the utility of the dry method was investigated.

Based on the results, it has been clarified that the properties of powder prepared by the dry method differ from those of the wet method. In the case of the dry method, it is suggested that the mechanism of preparation of the fine binder (PMMA powder) differs from that of the coarse binder. Furthermore, based on the experimental results, it has been suggested that the dry method could be used as the preparation method of the raw powder used in the tantalum solid electrolytic capacitor.  相似文献   

16.
Pneumatic conveying of bulk materials has become an important technology in many industries: from pharmaceuticals to petro-chemicals and power generation. Particulate segregation has been investigated in many solids handling processes. However, little work has been published on the segregation and mixing in pneumatic conveying pipelines, particularly in dense phase pneumatic conveying. Due to the character of dense phase flow, it is difficult to investigate the segregation in a flowing plug. A sampling device was designed and built to take samples from the pneumatic conveying pipeline after “catching a plug”. Several experiments were conducted over a range of gas–solids flow conditions with 3 mm nylon pellets and 3 mm ballotini as a segregating mixture. Experimental data combined with video footage were analysed to describe the segregation and mixing of solids plugs in pipes. This investigation provides initial research on establishing a segregation index in a flowing plug. A gas–solids two-dimensional mathematical model was developed for plug flow of a nylon-glass particulate mixture in a horizontal pipeline in dense phase pneumatic conveying. The model was developed based on the discrete element method (DEM). The model was used to simulate the motion of particles both in a homogeneous flow and as binary mixtures taking into account the various interactions between gas, particles and pipe wall. For the gas phase, the Navier Stokes equations were integrated by the semi-implicit method for pressure-linked equations (SIMPLE) using the scheme of Patankar employing the staggered grid system. For the particle motion the Newtonian equations of motion of individual particles were integrated, where repulsive and damping forces for particle collision, the gravity force, and the drag force were taken into account. For particle contact, a model with a simple non-linear spring and dash pot model for both normal and tangential components was used. This model employed a mixture of 3 mm pellets and ballotini as virtual materials with properties of nylon and glass. The results from the model are discussed and compared with experimental work and show qualitative agreement. Further modelling and experimental work in key areas is proposed.  相似文献   

17.
In an attempt to obtain finest possible microparticles of BaTiO3 (BT) with highest possible tetragonality via a solid state route, starting mixtures comprising BaCO3 and TiO2 were subjected to various pretreatments including addition of glycine and mechanical activation. Reaction processes were monitored by the changes in the weight, crystallinity, and morphology in detail. While mechanical activation with glycine significantly increased the rate of reaction and homogeneity of the particle size of the product, BT, simultaneous particle growth of BT was intolerably acute for micro-electronic devices. The fast particle coarsening was predominated by the coalescence of BT tiny particles formed around titania. A mixture with higher homogeneity was attained by using finer starting materials under wet mixing, avoiding significant mechanical stressing. Particle growth of BT was suppressed to ca. 100 nm to obtain fully crystallized BT particles without significant loss of tetragonality and, hence, close to meet our requirements for MLCCs.  相似文献   

18.
Due to their wide usage in industrial and technological processes, granular materials have captured great interest in recent research. The related studies are often based on numerical simulations and it is challenging to investigate computational phenomena of granular systems. Particle screening is an essential technology of particle separation in many industrial fields. This paper presents a numerical model for studying the particle screening process using the discrete element method that considers the motion of each particle individually. Dynamical quantities like particle positions, velocities and orientations are tracked at each time step of the simulation. The particular problem of interest is the separation of round shape particles of different sizes using a rotating tumbling vertical cylinder while the particulate material is continuously fed into its interior. This rotating cylinder can be designed as a uniform or stepped multi level obliqued vertical vessel and is considered as a big reservoir for the mixture of particulate material. The finer particles usually fall through the sieve openings while the oversized particles are rebounded and ejected through outlets located around the machine body. Particle–particle and particle–boundary collisions will appear under the tumbling motion of the rotating structure. A penalty method, which employs spring-damper models, will be applied to calculate the normal and frictional forces. As a result of collisions, the particles will dissipate kinetic energy due to the normal and frictional contact losses. The particle distribution, sifting rate of the separated particles and the efficiency of the segregation process have been studied. It is recognized that the screening phenomenon is very sensitive to the machines geometrical parameters, i.e. plate inclinations, shaft eccentricities and aperture sizes in the sieving plates at different levels of the structure. The rotational speed of the machine and the feeding rate of the particles flow have also a great influence on the transportation and segregation rates of the particles. In an attempt to better understand the mechanism of the particle transport between the different layers of the sifting system, different computational studies for achieving optimal operation have been performed.  相似文献   

19.
Dry particle coating is used to modify surface properties and monitor the end use properties of powders. These processes are mainly running in batch mode. In certain cases, continuous processes may present interest for specific applications (limitation of investments, stability, versatility…). In this study, the feasibility of dry coating particles by an innovative way derived from the well-known extrusion process was investigated. Adhesion between host and guest particles is induced by mechanical shear stress during processing. A preliminary parametric study on microcrystalline cellulose particles as host particles was carried out in order to determine the operating condition range. Then, coating was successfully performed using talc and a microcrystalline cellulose system, which demonstrates the feasibility of this novel process and led to different morphologies according to the operating conditions.  相似文献   

20.
In wet granulation processes, a particle adhesion mediated by a liquid bridge is one of the quite important phenomena. In an actual process, the liquid bridge shows dynamic motion due to continuous motion of the particles. Therefore, understanding of the particle adhesion phenomenon by a dynamic liquid bridge is essential to adequately and precisely control wet granulation processes. This study presents a direct numerical simulation of the particle–particle adhesion by a dynamic liquid bridge. Collision of a dry particle and a wet particle was simulated at various collision angles. In particular, translational and rotational motions of the particle at different collision angles were discussed through comparison with a conventional static liquid bridge force model. As a result, it was found that both translational and rotational motions were largely different between simulation results of the direct numerical simulation and static liquid bridge force model, especially at the tangential collision. To understand these results, we focused on the rotational behavior of the particle and deformation of the liquid bridge. It was concluded that the non-slip behavior of the liquid bridge on the particle surface is a key phenomenon for the particle-particle adhesion by the dynamic liquid bridge at the tangential collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号